Previous |  Up |  Next

Article

Keywords:
L-weakly compact operator; M-weakly compact operator; b-order bounded operator; b-weakly compact operator; b-L-weakly compact operator; order M-weakly compact operator; KB-space
Summary:
In this paper, we introduce and study new concepts of b-L-weakly and order M-weakly compact operators. As consequences, we obtain some characterizations of KB-spaces.
References:
[1] Aliprantis, C. D., Burkinshaw, O.: On weakly compact operators on Banach lattices. Proc. Am. Math. Soc. 83 (1981), 573-578. DOI 10.2307/2044122 | MR 0627695 | Zbl 0452.47038
[2] Aliprantis, C. D., Burkinshaw, O.: Positive Operators. Springer, Dordrecht (2006). DOI 10.1007/978-1-4020-5008-4 | MR 2262133 | Zbl 1098.47001
[3] Alpay, S., Altin, B., Tonyali, C.: On property (b) of vector lattices. Positivity 7 (2003), 135-139. DOI 10.1023/A:1025840528211 | MR 2028377 | Zbl 1036.46018
[4] Alpay, S., Altin, B., Tonyali, C.: A note on Riesz spaces with property-$b$. Czech. Math. J. 56 (2006), 765-772. DOI 10.1007/s10587-006-0054-0 | MR 2291773 | Zbl 1164.46310
[5] Dodds, P. G.: $o$-weakly compact mappings of Riesz spaces. Trans. Am. Math. Soc. 214 (1975), 389-402. DOI 10.2307/1997114 | MR 0385629 | Zbl 0313.46011
[6] Meyer-Nieberg, P.: Über Klassen schwach kompakter Operatoren in Banachverbanden. Math. Z. 138 (1974), 145-159 German. DOI 10.1007/BF01214230 | MR 0353053 | Zbl 0291.47020
[7] Meyer-Nieberg, P.: Banach Lattices. Universitext. Springer, Berlin (1991). DOI 10.1007/978-3-642-76724-1 | MR 1128093 | Zbl 0743.46015
[8] Zaanen, A. C.: Riesz Spaces II. North-Holland Mathematical Library, Volume 30. North-Holland, Amsterdam (1983). DOI 10.1016/s0924-6509(08)x7015-1 | MR 0704021 | Zbl 0519.46001
Partner of
EuDML logo