Previous |  Up |  Next

Article

Keywords:
Nevanlinna theory; meromorphic function; $q$-shift difference polynomial; uniqueness
Summary:
We investigate the uniqueness of a $q$-shift difference polynomial of meromorphic functions sharing a small function which extend the results of N. V. Thin (2017) to $q$-difference operators.
References:
[1] Dyavanal, R. S., Desai, R. V.: Uniqueness of $q$-difference and differential polynomials of entire functions. Math. Sci. Int. Research J. 4 (2015), 267-271.
[2] Dyavanal, R. S., Desai, R. V.: Uniqueness of $q$-shift difference and differential polynomials of entire functions. Far East J. Appl. Math. 91 (2015), 189-202. DOI 10.17654/FJAMJun2015_189_202 | Zbl 1332.30049
[3] Dyavanal, R. S., Desai, R. V.: Uniqueness of product of difference polynomials of meromorphic functions sharing fixed point with finite weight. Glob. J. Pure Appl. Math. 14 (2018), 331-346. MR 3889312
[4] Dyavanal, R. S., Hattikal, A. M.: Weighted sharing of difference-differential polynomials of entire functions. Math. Sci. Int. Research J. 4 (2015), 276-280.
[5] Dyavanal, R. S., Hattikal, A. M.: Weighted sharing of uniqueness of difference polynomials of meromorphic functions. Far East J. Math. Sci. (FJMS) 98 (2015), 293-313. DOI 10.17654/FJMSOct2015_293_313 | Zbl 1336.30049
[6] Dyavanal, R. S., Hattikal, A. M.: On the uniqueness of product of difference polynomials of meromorphic functions. Konuralp J. Math. 4 (2016), 42-55. MR 3571505 | Zbl 1355.30029
[7] Dyavanal, R. S., Hattikal, A. M.: Unicity theorems on difference polynomials of meromorphic functions sharing one value. Int. J. Pure Appl. Math. Sci. 9 (2016), 89-97.
[8] Dyavanal, R. S., Hattikal, A. M.: Uniqueness of $q$-shift difference polynomials of meromorphic functions sharing a small function. New Trends Math. Sci. 5 (2017), 250-263. DOI 10.20852/ntmsci.2017.144 | MR 3681536
[9] Hayman, W. K.: Meromorphic Functions. Oxford Mathematical Monographs. Clarendon Press, Oxford (1964). MR 0164038 | Zbl 0115.06203
[10] Lin, W.-C., Yi, H.-X.: Uniqueness theorems for meromorphic function. Indian J. Pure Appl. Math. 35 (2004), 121-132. MR 2040726 | Zbl 1056.30031
[11] Liu, K., Qi, X.-G.: Meromorphic solutions of $q$-shift difference equations. Ann. Pol. Math. 101 (2011), 215-225. DOI 10.4064/ap101-3-2 | MR 2799584 | Zbl 1235.30023
[12] Thin, N. V.: Uniqueness of meromorphic functions and $Q$-differential polynomials sharing small functions. Bull. Iran. Math. Soc. 43 (2017), 629-647. MR 3670885 | Zbl 1405.30032
[13] Xu, J., Zhang, X.: The zeros of $q$-shift difference polynomials of meromorphic functions. Adv. Difference Equ. 2012 (2012), Paper No. 200, 10 pages. DOI 10.1186/1687-1847-2012-200 | MR 3016706 | Zbl 1377.30029
[14] Yang, C. C., Yi, H. X.: Uniqueness Theory of Meromorphic Functions. Mathematics and Its Applications 557. Kluwer Academic Publishers, Dordrecht (2003). MR 2105668 | Zbl 1070.30011
[15] Yang, L.: Value Distribution Theory. Springer, Berlin; Science Press, Beijing (1993). DOI 10.1007/978-3-662-02915-2 | MR 1301781 | Zbl 0790.30018
[16] Zhang, X.: Value sharing of meromorphic functions and some questions of Dyavanal. Front. Math. China 7 (2012), 161-176. DOI 10.1007/s11464-012-0172-y | MR 2876905 | Zbl 1267.30084
[17] Zhao, Q., Zhang, J.: Zeros and shared one value of $q$-shift difference polynomials. J. Contemp. Math. Anal., Armen. Acad. Sci. 50 (2015), 63-69. DOI 10.3103/S1068362315020028 | MR 3444037 | Zbl 1336.30056
Partner of
EuDML logo