[2] Gardner, M.: The superellipse: a curve that lies between the ellipse and the rectangle. Sci. Am. 213 (1965), 222–238.
[3] Gielis, J.: Inventing the circle: the geometry of nature. Geniaal Publishers, Antwerp, 2003.
[4] Gielis, J.:
A generic geometric transformation that unifies a wide range of natural and abstract shapes. Am. J. Bot. 90 (2003), 333–338.
DOI 10.3732/ajb.90.3.333
[5] Gielis, J.:
The geometrical beauty of plants. Atlantis Press, Paris, 2017.
MR 3644202
[7] Holcombe, S. A., Wang, S. C., Grotberg, J. B.:
Modeling female and male rib geometry with logarithmic spirals. J. Biomech. 49 (2016), 2995–3003.
DOI 10.1016/j.jbiomech.2016.07.021
[9] Jong van Coevorden, C. M. de, Gielis, J., Caratelli, D.: Application of Gielis transformation to the design of metamaterial structures. J. Phys. Conf. Ser. 963 (2018), article no. 012008.
[11] Sharma, C., Dinesh, K. V.:
Miniaturization of spiral antenna based on Fibonacci sequence using modified Koch curve. IEEE Antennas Wirel. Propag. Lett. 16 (2017), 932–935.
DOI 10.1109/LAWP.2016.2614721
[12] Sharma, C., Dinesh, K. V.: Miniaturization of logarithmic spiral antenna using Fibonacci sequence and Koch fractals. 3rd International Conference for Convergence in Technology (I2CT), Pune, 2018, 1–4.
[13] Spíchal, L.: Superelipsa a superformule. Matematika – fyzika – informatika 29 (2020), 60–75.
[14] Verstraelen, L. C. A.: Univerzální přírodní tvary. Pokroky Mat. Fyz. Astronom. 52 (2007), 142–151.