[1] Adamko, P.:
On the volume of points at distance at least 1 in the unit four-dimensional cube. J. Geom. Graph. 23 (2019), 1–3.
MR 3982404
[2] Adamko, P., Bálint, V.: Universal asymptotical results on packing of cubes. Stud. Univ. Žilina Math. Ser. 28 (2016), 5–16.
[3] Ament, P., Blind, G.:
Packing equal circles in a square. Studia Sci. Math. Hungar. 36 (2000), 313–316.
MR 1798737
[4] Andreescu, T., Mushkarov, O.: A note on the Malfatti problem. Math. Reflections 4 (2006), 1–7.
[6] Bálint, V.: Poznámka k jednému ukladaciemu problému. Práce a Štúdie Vysokej školy dopravy a spojov v Žiline, séria Mat.–Fyz. 8 (1990), 7–12.
[7] Bálint, V.:
A packing problem and the geometrical series. In: Nešetřil, J., Fiedler, M. (eds.): Fourth Czechoslovakian symposium on combinatorics, graphs and complexity, held in Prachatice, Czechoslovakia, 1990. Proceedings. Annals of Discrete Mathematics, vol. 51. North-Holland, Amsterdam, 1992, 17–21.
MR 1206238
[9] Bálint, V.:
Maximization of the sum of areas. Stud. Univ. Žilina Math. Ser. 24 (2010), 1–8.
MR 2829522
[10] Bálint, V.: Dva typy najlepších uložení systému štvorcov v obdĺžniku. Proceedings of Symposium on Computer Geometry, STU, Bratislava, 2011, 13–16.
[11] Bálint, V., Adamko, P.: Minimalizácia objemu kvádra pre uloženie troch kociek v dimenzii 4. G, Slov. Čas. Geom. Graf. 12 (2015), 5–16.
[12] Bálint, V., Adamko, P.: Minimization of the container for packing of three cubes in dimension 4. Proceedings of Slovak–Czech Conference on Geometry and Graphics, STU, Bratislava, 2015, 13–24.
[13] Bálint, V., Adamko, P.: Minimization of the parallelepiped for packing of three cubes in dimension 6. Proceedings of APLIMAT 2016 – 15th Conference on Applied Mathematics, Bratislava, 2016, 44–55.
[14] Bálint, V., Bálint, V., jr.: Unicity of one optimal arrangement of points in the cube. Proceedings of Symposium on Computer Geometry, Bratislava, 2001, 8–10.
[15] Bálint, V., Bálint, V., jr.:
On the volume of points at distance at least one in the unit cube. Geombinatorics 12 (2003), 157–166.
MR 1972054
[16] Bálint, V., Bálint, V., jr.: Horný odhad pre rozmiestňovanie bodov v kocke. Sborník 5. konference o matematice a fyzice na VŠT, Brno, 2007, 32–35.
[17] Bálint, V., Bálint, V., jr.:
On the maximum volume of points at least one unit away from each other in the unit $n$-cube. Periodica Math. Hung. 57 (2008), 83–91.
DOI 10.1007/s10998-008-7083-2 |
MR 2448399
[18] Bálint, V., Bálint, V., jr.: Umiestňovnie bodov do jednotkovej kocky. G, Slov. Čas. Geom. Graf. 5 (2008), 5–12.
[20] Bálint, V., Bálint, V., jr.:
Packing of points into the unit 6-dimensional cube. Contrib. Discrete Math. 7 (2012), 51–57.
MR 2956337
[22] Bezdek, A., Fodor, F.: Extremal triangulations of convex polygons. Symmetry: Culture and Science 21 (2010), 333–340.
[23] Böröczky, K.:
The Newton-Gregory problem revisited. In: Bezdek, A. (ed.): Discrete Geometry, Marcel Dekker, New York, 2003, 103–110.
MR 2034712
[24] Böröczky, K., jr.:
Finite packing and covering. Cambridge Univ. Press, 2004.
MR 2078625
[25] Brass, P., Moser, W. O. J., Pach, J.:
Research problems in discrete geometry. Springer, New York, 2005.
MR 2163782
[26] Cohn, H., Elkies, N. D.:
New upper bounds on sphere packings I. Ann. of Math. (2) 157 (2003), 689–714.
MR 1973059
[27] Croft, H. T., Falconer, K. J., Guy, R. K.:
Unsolved problems in geometry. 2nd ed., Springer-Verlag, New York–Berlin–Heidelberg, 1994.
MR 1316393
[28] Edel, Y., Rains, E. M., Sloane, N. J. A.:
On kissing volumes in dimensions 32 to 128. Electron. J. Combin. 5 (1988), #R22.
MR 1614304
[29] Erdős, P.:
On some problems of elementary and combinatorial geometry. Ann. Mat. Pura Appl., Ser. IV 103 (1975), 99–108.
DOI 10.1007/BF02414146 |
MR 0411984
[30] Erdős, P.:
Some more problems on elementary geometry. Austral. Math. Soc. Gaz. 5 (1978), 52–54.
MR 0509363
[31] Fejes Tóth, L.:
Remarks on a theorem of R. M. Robinson. Studia Sci. Math. Hung. 4 (1969), 441–445.
MR 0254744
[32] Fejes Tóth, L.:
Lagerungen in der Ebene, auf der Kugel und im Raum. 2. Auflage, Springer-Verlag, 2003.
MR 0353117
[33] Fejes Tóth, G., Kuperberg, W.:
Packing and covering with convex sets. In: Gruber, P. M. et al. (ed.): Handbook of convex geometry, Volume B, North-Holland, Amsterdam, 1993, 799–860.
MR 1242997
[34] Ferguson, S. P., Hales, T. C.:
The Kepler conjecture: The Hales–Ferguson proof. Springer, New York, 2011.
MR 3075372
[36] Fodor, F.:
The densest packing of 12 congruent circles in a circle. Beitr. Algebra Geom. 21 (2000), 401–409.
MR 1801430
[37] Fodor, F.:
Packing 14 congruent circles in a circle. Stud. Univ. Žilina Math. Ser. 16 (2003), 25–34.
MR 2065745
[38] Fodor, F.:
The densest packing of 13 congruent circles in a circle. Beitr. Algebra Geom. 21 (2003), 431–440.
MR 2017043
[39] Gauss, C. F.:
Recension der Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seber. J. Reine Angew. Math. 20 (1840), 312–320.
MR 1578241
[40] Graham, R. L., Lubachevsky, B. D.:
Dense packings of equal disks in an equilateral triangle: from 22 to 34 and beyond. Electron. J. Combin. 2 (1995), #A1.
DOI 10.37236/1223 |
MR 1309122
[42] Groemer, H.:
Covering and packing properties of bounded sequences of convex sets. Mathematica 29 (1982), 18–31.
MR 0673502
[43] Guy, R. K.:
Problems. In: Kelly, L. M. (ed.): The geometry of metric and linear spaces. Proceedings of a conference held at Michigan State University, East Lansing, June 17–19, 1974, Springer-Verlag, 1975, 233–244.
MR 0388240
[49] Hales, T. C.:
Cannonballs and honeycombs. Notices Amer. Math. Soc. 47 (2000), 440–449.
MR 1745624
[50] Hales, T. C., Ferguson, S. P.:
The Kepler conjecture. Discrete Comput. Geom. 36 (2006), 1–269.
MR 3075372
[51] Hortobágyi, I.:
Über die Scheibenklassen bezügliche Newtonsche Zahl der konvexen Scheiben. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 18 (1975), 123–127.
MR 0425775
[52] Horvát, G. Á.:
Packing points into a unit cube in higher space. Stud. Univ. Žilina Math. Ser. 24 (2010), 23–28.
MR 2829525
[53] Hougardy, S.:
On packing squares into a rectangle. Tech. Report 101007. Forschungsinstitut für Diskrete Mathematik, March 2010.
MR 2805963
[55] Hsiang, W.-Y.:
A rejoinder to T. C. Hales’ article: The status of the Kepler conjecture. Math. Intelligencer 17 (1994), 35–42.
MR 1319992
[59] Joós, A.: Pontok elhelyezése egységkockában. PhD tézisek, 2008.
[60] Joós, A.:
On the volume of points at distance at least 1 in the 5-dimensional unit cube. Acta Sci. Math. 76 (2010), 217–231.
DOI 10.1007/BF03549837 |
MR 2668418
[62] Kabatjanskij, G. A., Levenshtein, V. I.:
Bounds for packings on a sphere and space. Problemy Peredachi Informatsii 14 (1978), 3–24.
MR 0514023
[63] Kepler, J.: Strena seu de nive sexangula. Tampach, Frankfurt, 1611. English translation: The six-cornered snowflake. Oxford, 1966.
[65] Kleitman, D. J., Krieger, M. M.:
An optimal bound for two dimensional bin packing. Proceedings of the 16th Annual Symposium on Foundations of Computer Science, IEEE Computer Society, 1975, 163–168.
MR 0423195
[69] Levenshtein, V. I.:
On bounds for packings in $n$-dimensional Euclidean space. Soviet Math. Dokl. 20 (1979), 417–421.
MR 0529659
[71] Malfatti, G.: Memoria sopra un problema sterotomico. Memorie di Matematica e di Fisica della Societa Italiana delle Scienze 10 (1803), 235–244.
[73] Mauldin, R. D.:
The Scottish Book. Birkhäuser, 1981.
MR 0666400
[76] Melissen, J. B. M.:
Densest packing of six equal circles in a square. Elem. Math. 49 (1994), 27–31.
MR 1261756
[78] Melissen, J. B. M.:
Densest packing of eleven congruent circles in an equilateral triangle. Acta Math. 65 (1994), 389–393.
MR 1281448
[81] Moser, L.: Poorly formulated unsolved problems of combinatorial geometry. 1963.
[83] Moser, W. O. J., Pach, J.:
Research problems in discrete geometry. McGill University, Montreal, 1986, 1993.
MR 1106701
[85] Musin, O. R.:
The kissing volume in four dimensions. Ann. of Math. (2) 168 (2008), 1–32.
MR 2415397
[86] Novotný, P.:
A note on packing of squares. Studies Univ. Žilina Mat.-Phys. Ser. A 10 (1995), 35–39.
MR 1437834
[87] Novotný, P.:
On packing of squares into a rectangle. Arch. Math. (Brno) 32 (1996), 75–83.
MR 1407340
[88] Novotný, P.:
On packing of four and five squares into a rectangle. Note Mat. 19 (1999), 199–206.
MR 1816873
[89] Novotný, P.: Využitie počítača pri riešení ukladacieho problému. Proceedings of Symposium on Computational Geometry, STU, Bratislava, 2002, 60–62.
[90] Novotný, P.: Pakovanie troch kociek. Proceedings of Symposium on Computer Geometry, STU, Bratislava, 2006, 117–119.
[91] Novotný, P.: Najhoršie pakovateľné štyri kocky. Proceedings of Symposium on Computer Geometry, STU, Bratislava, 2007, 78–81.
[92] Novotný, P.: Ukladanie kociek do kvádra. Proceedings of Symposium on Computer Geometry, STU, Bratislava, 2011, 100–103.
[93] Nurmela, K. J., Östergård, P. R. J.:
More optimal packings of equal circles in a square. Discrete Comput. Geom. 22 (1999), 439–457.
DOI 10.1007/PL00009472 |
MR 1706578
[98] Peikert, R., Würtz, D., Monagan, M., de Groot, C.:
Packing circles in a square: A review and new results. In: Kall, P. (ed.): System modelling and optimization. Proceedings of the 15th IFIP conference, Zurich, Switzerland, September 2–6, 1991, Springer-Verlag, Berlin, 1992, 45–54.
MR 1182322
[101] Sedliačková, Z.:
Packing three cubes in 8-dimensional space. J. Geom. Graph. 22 (2018), No. 2, 217–223.
MR 3919006
[106] Thue, A.:
On the densest packing of congruent circles in the plane. Skr. Vidensk.-Selsk. Christiana 1 (1910), 3–9.
MR 2994977