[1] Babiarz, A., Czornik, A., Niezabitowski, M.:
Output controllability of the discrete-time linear switched systems. Nonlinear Analysis: Hybrid Systems 21 (2016), 1-10.
DOI 10.1016/j.nahs.2015.12.004 |
MR 3500067
[2] Babiarz, A., Niezabitowski, M.:
Controllability Problem of Fractional Neutral Systems: A Survey. Math. Problems Engrg. 4715861 (2017), 1-15.
DOI 10.1155/2017/4715861 |
MR 3603402
[4] Balachandran, K., Zhou, Y., Kokila, J.:
Relative controllability of fractional dynamical systems with delays in control. Commun. Nonlinear Sci. Numer. Simul. 17
MR 2913988 |
Zbl 1248.93022
[5] Balachandran, K., Park, J. Y., Trujillo, J. J.:
Controllability of nonlinear fractional dynamical systems. Nonlinear Analysis 75 (2012), 1919-1926.
DOI 10.1016/j.na.2011.09.042 |
MR 2870885
[7] Balachandran, K., Kokila, J.:
Controllability of fractional dynamical systems with prescribed controls. IET Control Theory Appl.7 (2013), 1242-1248.
DOI 10.1049/iet-cta.2012.0049 |
MR 3175614
[8] Balachandran, K.:
Controllability of Nonlinear Fractional Delay Dynamical Systems with Multiple Delays in Control. Lect. Notes Electr. Engrg. Theory and Applications of Non-integer Order Systems 407 (2016), 321-332.
DOI 10.1007/978-3-319-45474-0_29 |
MR 3638562
[9] Chen, Y. Q., Ahn, H. S., Xue, D.:
Robust controllability of interval fractional order linear time invariant systems. Signal Processes 86 (2006), 2794-2802.
DOI 10.1016/j.sigpro.2006.02.021
[10] Deng, W., Li, C., Lu, J.:
Stability analysis of linear fractional differential systems with multiple time delays. Nonlinear Dynamics 48 (2007), 409-416.
DOI 10.1007/s11071-006-9094-0 |
MR 2312588
[11] Isac, G.:
On Rothe's fixed point theorem in a general topological vector space. An. St. Univ. Ovidius Constanta 12 (2004), 127-134.
MR 2209122
[12] Iturriaga, E., Leiva, H.:
A characterization of semilinear surjective operators and applications to control problems. Appl. Math. 1 (2010), 265-273.
DOI 10.4236/am.2010.14033
[17] Klamka, J.:
Controllability and minimum energy control problem of fractional discrete-time systems. New Trends Nanotechology and Fractional Calculus Applications, Springer, 2010.
DOI 10.1007/978-90-481-3293-5_45 |
MR 2642623
[18] Klamka, J.: Local controllability of fractional discrete-time semilinear systems. Acta Mechanica at Automatica 5 (2011), 55-58.
[20] Klamka, J., Czornik, A., Niezabitowski, M., Babiarz, A.:
Controllability and minimum energy control of linear fractional discrete-time infinite-dimensional systems. In: Proc. 11th IEEE International Conference on Control and Automation, Taiwan 2014, pp. 1210-1214.
DOI 10.1109/icca.2014.6871094 |
MR 3728359
[21] Klamka, J., Czornik, A.:
Controllability problem of positive discrete fractional systems with constant delay. In: Proc. 17th International Carpathian Control Conference 2016, pp. 324-328.
DOI 10.1109/carpathiancc.2016.7501117
[22] Klamka, J., Sikora, B.:
New controllability Criteria for Fractional Systems with Varying Delays. Lect. Notes Electr. Engrg. Theory and Applications of Non-integer Order Systems 407 (2017), 333-344.
DOI 10.1007/978-3-319-45474-0_30
[24] Luyben, W. L.:
Process Modelling, Simulation and Control for Chemical Engineers. McGraw-Hill, Chemical Engineering Series, International Editions, 1990.
DOI 10.1002/pol.1973.130110416
[25] Miller, K. S., Ross, B.:
An Introduction to the Fractional Calculus and Fractional Differential Calculus. Villey 1993.
MR 1219954
[26] Monje, A., Chen, Y., Viagre, B. M., Xue, D., Feliu, V.:
Fractional-order Systems and Controls. Fundamentals and Applications. Springer-Verlag 2010.
DOI 10.1007/978-1-84996-335-0 |
MR 3012798
[27] Nirmala, R. J., Balachandran, K., Rodriguez-Germa, L., Trujillo, J. J.:
Controllability of nonlinear fractional delay dynamical systems. Reports Math. Physics 77 (2016), 87-104.
DOI 10.1016/s0034-4877(16)30007-6 |
MR 3461800
[30] Podlubny, I.:
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. In: Mathematics in Science and Engineering, Academic Press 1999.
MR 1658022 |
Zbl 0924.34008
[31] Sabatier, J., Agrawal, O. P., Machado, J. A Tenreiro:
Advances in Fractional Calculus. In: Theoretical Developments and Applications in Physics and Engineering, Springer-Verlag 2007.
DOI 10.1007/978-1-4020-6042-7 |
MR 2432163
[32] Sakthivel, R., Ren, Y., Mahmudov, N.I.:
On the approximate controllability of semilinear fractional differential systems. Computers Math. Appl. 62 (2011), 1451-1459.
DOI 10.1016/j.camwa.2011.04.040 |
MR 2824732
[33] Sakthivel, R., Ganesh, R., Ren, Y., Anthoni, S. M.:
Approximate controllability of nonlinear fractional dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 3498-3508.
DOI 10.1016/j.cnsns.2013.05.015 |
MR 3081379
[34] Samko, S. G., Kilbas, A. A., Marichev, O. I.:
Fractional Integrals and Derivatives: Theory and Applications. Gordan and Breach Science Publishers 1993.
MR 1347689 |
Zbl 0818.26003
[38] Sikora, B., Klamka, J.:
Cone-type constrained relative controllability of semilinear fractional systems with delays. Kybernetika 53 (2017), 370-381.
DOI 10.14736/kyb-2017-2-0370 |
MR 3661357
[39] Smart, J. D. R.:
Fixed Points Theorems. Cambridge University Press, 1974.
MR 0467717
[40] Trzasko, W.: Reachability and controllability of positive fractional discrete-time systems with delay. J. Automat. Mobile Robotics Intell. Systems 2 (2008), 43-47.