Previous |  Up |  Next

Article

Keywords:
implications; finite chain; smoothness
Summary:
Mas et al. adapted the notion of smoothness, introduced by Godo and Sierra, and discussed two kinds of smooth implications (a discrete counterpart of continuous fuzzy implications) on a finite chain. This work is devoted to exploring the formal relations between smoothness and other six properties of implications on a finite chain. As a byproduct, several classes of smooth implications on a finite chain are characterized.
References:
[1] Baczyński, M., Jayaram, B.: Fuzzy Implications. In: Studies in Fuzziness and Soft Computing, Vol. 231, Springer, Berlin 2008. MR 2428086 | Zbl 1293.03012
[2] Fodor, J.: Smooth associative operations on finite ordinal scales. IEEE Trans. Fuzzy Systems 8 (2000), 6, 791-795. DOI 10.1109/91.890343
[3] Mas, M., Monserrat, M., Torrens, J.: S-implications and R-implications on a finite chain. Kybernetika 40 (2004), 1, 3-20. MR 2068595
[4] Mas, M., Monserrat, M., Torrens, J.: On two types of discrete implications. Int. J. Approx. Reason. 40 (2005), 262-279. DOI 10.1016/j.ijar.2005.05.001 | MR 2193766
[5] Mayor, G., Torrens, J.: On a class of operators for expert systems. Int. J. Intell. Systems 8 (1993), 771-778. DOI 10.1002/int.4550080703 | Zbl 0785.68087
[6] Shi, Y., Gasse, B. Van, Ruan, D., Kerre, E. E.: On dependencies and independencies of fuzzy implication axioms. Fuzzy Sets and Systems 161 (2010), 1388-1405. DOI 10.1016/j.fss.2009.12.003 | MR 2606421
[7] Yager, R. R.: Non-numeric multi-criteria multi-person decision making. Group Decisions Negotiation 2 (1993), 81-93. DOI 10.1007/bf01384404
Partner of
EuDML logo