[1] Arnold, L., Tudor, C.:
Stationary and almost periodic solutions of almost periodic affine stochastic differential equations. Stochastics and Stochast. Reports 64 (1998), 177-193.
DOI 10.1080/17442509808834163 |
MR 1709282
[2] Arunkumar, A., Sakthivel, R., Mathiyalagan, K., Park, J. H.:
Robust stochastic stability of discrete-time fuzzy Markovian jump neural networks. ISA Transactions 53 (2014), 1006-1014.
DOI 10.1016/j.isatra.2014.05.002
[5] Bouzerdoum, A., Pinter, R. B.:
Shunting inhibitory cellular neural networks: derivation and stability analysis. IEEE Trans. Circuits Systems 1 - Fundament. Theory Appl. 40 (1993), 215-221.
DOI 10.1109/81.222804 |
MR 1232563
[7] Dorogovtsev, A. Y., Ortega, O. A.:
On the existence of periodic solutions of a stochastic equation in a Hilbert space. Visnik Kiiv. Univ. Ser. Mat. Mekh. 30 (1988), 21-30.
MR 1004452
[8] Du, Bo, Liu, Y. R., Abbas, I. A.:
Existence and asymptotic behavior results of periodic solution for discrete-time neutral-type neural networks. J. Frank. Inst. 353 (2016), 448-461.
DOI 10.1016/j.jfranklin.2015.11.013 |
MR 3448152
[9] Fan, Q. Y., Shao, J. Y.:
Positive almost periodic solutions for shunting inhibitory cellular neural networks with time-varying and continuously distributed delays. Commun. Nonlinear Sci. Numer. Simulat. 15 (2010), 1655-1663.
DOI 10.1016/j.cnsns.2009.06.026 |
MR 2576792
[10] Hu, M. F., Cao, J. D., Hua, A. H.:
Mean square exponential stability for discrete-time stochastic switched static neural networks with randomly occurring nonlinearities and stochastic delay. Neurocomputing 129 (2014), 476-481.
DOI 10.1016/j.neucom.2013.09.011 |
MR 3077664
[12] Hu, S., Wang, J.:
Global robust stability of a class of discrete-time interval neural networks. IEEE Trans. Circuits Syst. I Regul. Pap. 53 (2006), 129-138.
DOI 10.1109/tcsi.2005.854288 |
MR 2212239
[13] Huang, Z. K., Mohamad, S., Gao, F.:
Multi-almost periodicity in semi-discretizations of a general class of neural networks. Math. Computers Simul. 101 (2014), 43-60.
DOI 10.1016/j.matcom.2013.05.017 |
MR 3199946
[14] Huang, Z. K., Wang, X. H., Gao, F.:
The existence and global attractivity of almost periodic sequence solution of discrete-time neural networks. Physics Lett. A 350 (2006), 182-191.
DOI 10.1016/j.physleta.2005.10.022 |
MR 2344928
[15] Huang, Z. K., Wang, X. H., Xia, Y. H.:
Exponential attractor of $\kappa$-almost periodic sequence solution of discrete-time bidirectional neural networks. Simul. Modell. Practice Theory 18 (2010), 317-337.
DOI 10.1016/j.simpat.2009.11.007
[16] Kawata, T.:
Almost Periodic Weakly Stationary Processes, Statistics and Probability: Essays in Honor of C. R. Rao. North-Holland, Amsterdam 1982, pp. 383-396.
MR 0659491
[17] Kuang, J. C.: Applied Inequalities. Shandong Science and Technology Press, Shandong 2012.
[18] Lan, Q. X., Niu, H. W., Liu, Y. M., Xu, H. F.:
Global output-feedback finite-time stabilization for a class of stochastic nonlinear cascaded systems. Kybernetika 53 (2017), 780-802.
DOI 10.14736/kyb-2017-5-0780 |
MR 3750103
[19] Liu, B., Huang, L.:
Existence and stability of almost periodic solutions for shunting inhibitory cellular neural networks with continuously distributed delays. Phys. Lett. A 349 (2006), 177-186.
DOI 10.1016/j.physleta.2005.09.023 |
MR 2343183
[20] Liu, D., Wang, L.J., Pan, Y. N., Ma, H. Y.:
Mean square exponential stability for discrete-time stochastic fuzzy neural networks with mixed time-varying delay. Neurocomputing 171 (2016), 1622-1628.
DOI 10.1016/j.neucom.2015.06.045
[23] Mohamad, S., Gopalsamy, K.:
Exponential stability of continuous-time and discrete-time cellular neural networks with delays. Appl. Math. Comput. 135 (2003), 17-38.
DOI 10.1016/s0096-3003(01)00299-5 |
MR 1934312
[24] Mohamad, S., Naim, A. G.:
Discrete-time analogues of integro-differential equations modelling bidirectional neural networks. J. Comput. Appl. Math. 138 (2002), 1-20.
DOI 10.1016/s0377-0427(01)00366-1 |
MR 1876679
[25] Nagamani, G., Ramasamy, S., Balasubramaniam, P.:
Robust dissipativity and passivity analysis for discrete-time stochastic neural networks with time-varying delay. Complexity 21 (2014), 47-58.
DOI 10.1002/cplx.21614 |
MR 3457542
[26] Ou, Y., Liu, H., Si, Y., Feng, Z.:
Stability analysis of discrete-time stochastic neural networks with time-varying delays. Neurocomputing 73 (2010), 740-748.
DOI 10.1016/j.neucom.2009.10.017
[27] Raj, S., Ramachandran, R., Rajendiran, S., Cao, J. D.:
Passivity analysis of uncertain stochastic neural network with leakage and distributed delays under impulsive perturbations. Kybernetika 54 (2018), 3-29.
DOI 10.14736/kyb-2018-1-0003 |
MR 3780953
[28] Şaylı, M., Yılmaz, E.:
Periodic solution for state-dependent impulsive shunting inhibitory CNNs with time-varying delays. Neural Networks 68 (2015), 1-11.
DOI 10.1016/j.neunet.2015.04.004
[29] Smart, D. R.:
Fixed Point Theorems. Cambridge University Press, Cambridge 1980.
MR 0467717
[32] Wang, P., Li, B., Li, Y. K.:
Square-mean almost periodic solutions for impulsive stochastic shunting inhibitory cellular neural networks with delays. Neurocomputing 167 (2015), 76-82.
DOI 10.1016/j.neucom.2015.04.089 |
MR 2343183
[33] Wang, J., Zhang, X. M., Han, Q. L.:
Event-Triggered generalized dissipativity filtering for neural networks with time-varying delays. IEEE Trans. Neural Networks Learning Systems 27 (2016), 77-88.
DOI 10.1109/tnnls.2015.2411734 |
MR 3465626
[34] Xiong, W., Cao, J. D.:
Global exponential stability of discrete-time Cohen-Grossberg neural networks. Neurocomputing 64 (2005), 433-446.
DOI 10.1016/j.neucom.2004.08.004
[35] Xiong, L. L., Cheng, J., Cao, J. D., Liu, Z. X.:
Novel inequality with application to improve the stability criterion for dynamical systems with two additive time-varying delays. Applied Math. Comput. 321 (2018), 672-688.
DOI 10.1016/j.amc.2017.11.020 |
MR 3732406
[36] Xu, C. J., Li, P. L.:
On anti-periodic solutions for neutral shunting inhibitory cellular neural networks with time-varying delays and D operator. Neurocomputing 275 (2018), 377-382.
DOI 10.1016/j.neucom.2017.08.030
[37] Yang, L., Li, Y. K.:
Periodic solutions for stochastic shunting inhibitory cellular neural networks with distributed delays. Advances Difference Equations 2014 (2014), 1-37.
DOI 10.1186/1687-1847-2014-37 |
MR 3213930
[38] Yao, L. G.:
Global exponential convergence of neutral type shunting inhibitory cellular neural networks with d operator. Neural Process. Lett. 45 (2017), 401-409.
DOI 10.1007/s11063-016-9529-7
[39] Zhang, T. W.:
Multiplicity of positive almost periodic solutions in a delayed Hassell-Varleytype predator-prey model with harvesting on prey. Math. Meth. Appl. Sci. 37 (2014), 686-697.
DOI 10.1002/mma.2826 |
MR 3180630
[40] Zhang, T. W.:
Almost periodic oscillations in a generalized Mackey-Glass model of respiratory dynamics with several delays. Int. J. Biomath. 7 (2014), 1450029 (22 pages).
DOI 10.1002/mma.2826 |
MR 3210478
[41] Zhang, T. W., Gan, X. R.:
Almost periodic solutions for a discrete fishing model with feedback control and time delays. Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 150-163.
DOI 10.1016/j.cnsns.2013.06.019 |
MR 3142456
[42] Zhang, X. M., Han, Q. L.:
Global asymptotic stability for a class of generalized neural networks with interval time-varying delays. IEEE Trans. Neural Networks 22 (2011), 1180-1192.
DOI 10.1109/tnn.2011.2147331
[43] Zhang, X. M., Han, Q. L.:
An overview of recent developments in Lyapunov-Krasovskii functionals and stability criteria for recurrent neural networks with time-varying delays. Neurocomputing 313 (2018), 392-401.
DOI 10.1016/j.neucom.2018.06.038
[44] Zhang, X. M., Han, Q. L., Zeng, Z. G.:
Hierarchical type stability criteria for delayed neural networks via canonical Bessel-Legendre inequalities. IEEE Trans. Cybernet. 48 (2018), 1660-1671.
DOI 10.1109/tcyb.2017.2776283
[45] Zhang, T. W., Liao, Y. Z.:
Existence and global attractivity of positive almost periodic solutions for a kind of fishing model with pure-delay. Kybernetika 53 (2017), 612-629.
DOI 10.14736/kyb-2017-4-0612 |
MR 3730255
[46] Zhang, H. Y., Qiu, Z. P., Xiong, L. L.:
Stochastic stability criterion of neutral-type neural networks with additive time-varying delay and uncertain semi-Markov jump. Neurocomputing 333 (2019), 395-406.
DOI 10.1016/j.neucom.2018.12.028
[47] Zhang, T. W., Xiong, L. L.:
Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative. Applied Mathematics Letters 101 (2020), 106072.
DOI 10.1016/j.aml.2019.106072 |
MR 4018066
[48] Zhang, T. W., Yang, L., Xu, L. J.:
Stage-structured control on a class of predator-prey system in almost periodic environment. International Journal of Control 2019 (2019), in print.
DOI 10.1080/00207179.2018.1513165
[49] Zhang, Z. Q., Zhou, D. M.:
Existence and global exponential stability of a periodic solution for a discrete-time interval general BAM neural networks. J. Frank. Inst. 347 (2010), 763-780.
DOI 10.1016/j.jfranklin.2010.02.007 |
MR 2645389
[50] Zhao, H., Sun, L., Wang, G.:
Periodic oscillation of discrete-time bidirectional associative memory neural networks. Neurocomputing 70 (2007), 2924-2930.
DOI 10.1016/j.neucom.2006.11.010