Previous |  Up |  Next

Article

Keywords:
semi-discrete method; stochastic; Krasnoselskii's fixed point theorem; almost periodicity; global exponential stability
Summary:
By using the semi-discrete method of differential equations, a new version of discrete analogue of stochastic shunting inhibitory cellular neural networks (SICNNs) is formulated, which gives a more accurate characterization for continuous-time stochastic SICNNs than that by Euler scheme. Firstly, the existence of the 2th mean almost periodic sequence solution of the discrete-time stochastic SICNNs is investigated with the help of Minkowski inequality, Hölder inequality and Krasnoselskii's fixed point theorem. Secondly, the moment global exponential stability of the discrete-time stochastic SICNNs is also studied by using some analytical skills and the proof of contradiction. Finally, two examples are given to demonstrate that our results are feasible. By numerical simulations, we discuss the effect of stochastic perturbation on the almost periodicity and global exponential stability of the discrete-time stochastic SICNNs.
References:
[1] Arnold, L., Tudor, C.: Stationary and almost periodic solutions of almost periodic affine stochastic differential equations. Stochastics and Stochast. Reports 64 (1998), 177-193. DOI 10.1080/17442509808834163 | MR 1709282
[2] Arunkumar, A., Sakthivel, R., Mathiyalagan, K., Park, J. H.: Robust stochastic stability of discrete-time fuzzy Markovian jump neural networks. ISA Transactions 53 (2014), 1006-1014. DOI 10.1016/j.isatra.2014.05.002
[3] Bashkirtseva, I.: Controlling the stochastic sensitivity in thermochemical systems under incomplete information. Kybernetika 54 (2018), 96-109. DOI 10.14736/kyb-2018-1-0096 | MR 3780958
[4] Bezandry, P. H., Diagana, T.: Almost Periodic Stochastic Processes. Springer, New York 2011. DOI 10.1007/978-1-4419-9476-9 | MR 2761071
[5] Bouzerdoum, A., Pinter, R. B.: Shunting inhibitory cellular neural networks: derivation and stability analysis. IEEE Trans. Circuits Systems 1 - Fundament. Theory Appl. 40 (1993), 215-221. DOI 10.1109/81.222804 | MR 1232563
[6] Chen, A., Cao, J., Huang, L.: Almost periodic solution of shunting inhibitory CNNs with delays. Phys. Lett. A 298 (2002), 161-170. DOI 10.1016/s0375-9601(02)00469-3 | MR 1917000
[7] Dorogovtsev, A. Y., Ortega, O. A.: On the existence of periodic solutions of a stochastic equation in a Hilbert space. Visnik Kiiv. Univ. Ser. Mat. Mekh. 30 (1988), 21-30. MR 1004452
[8] Du, Bo, Liu, Y. R., Abbas, I. A.: Existence and asymptotic behavior results of periodic solution for discrete-time neutral-type neural networks. J. Frank. Inst. 353 (2016), 448-461. DOI 10.1016/j.jfranklin.2015.11.013 | MR 3448152
[9] Fan, Q. Y., Shao, J. Y.: Positive almost periodic solutions for shunting inhibitory cellular neural networks with time-varying and continuously distributed delays. Commun. Nonlinear Sci. Numer. Simulat. 15 (2010), 1655-1663. DOI 10.1016/j.cnsns.2009.06.026 | MR 2576792
[10] Hu, M. F., Cao, J. D., Hua, A. H.: Mean square exponential stability for discrete-time stochastic switched static neural networks with randomly occurring nonlinearities and stochastic delay. Neurocomputing 129 (2014), 476-481. DOI 10.1016/j.neucom.2013.09.011 | MR 3077664
[11] Hu, S. G., Huang, C. M., Wu, F. K.: Stochastic Differential Equations. Science Press, Beijing 2008. DOI 10.1142/9789812774798\_0002 | MR 0701398
[12] Hu, S., Wang, J.: Global robust stability of a class of discrete-time interval neural networks. IEEE Trans. Circuits Syst. I Regul. Pap. 53 (2006), 129-138. DOI 10.1109/tcsi.2005.854288 | MR 2212239
[13] Huang, Z. K., Mohamad, S., Gao, F.: Multi-almost periodicity in semi-discretizations of a general class of neural networks. Math. Computers Simul. 101 (2014), 43-60. DOI 10.1016/j.matcom.2013.05.017 | MR 3199946
[14] Huang, Z. K., Wang, X. H., Gao, F.: The existence and global attractivity of almost periodic sequence solution of discrete-time neural networks. Physics Lett. A 350 (2006), 182-191. DOI 10.1016/j.physleta.2005.10.022 | MR 2344928
[15] Huang, Z. K., Wang, X. H., Xia, Y. H.: Exponential attractor of $\kappa$-almost periodic sequence solution of discrete-time bidirectional neural networks. Simul. Modell. Practice Theory 18 (2010), 317-337. DOI 10.1016/j.simpat.2009.11.007
[16] Kawata, T.: Almost Periodic Weakly Stationary Processes, Statistics and Probability: Essays in Honor of C. R. Rao. North-Holland, Amsterdam 1982, pp. 383-396. MR 0659491
[17] Kuang, J. C.: Applied Inequalities. Shandong Science and Technology Press, Shandong 2012.
[18] Lan, Q. X., Niu, H. W., Liu, Y. M., Xu, H. F.: Global output-feedback finite-time stabilization for a class of stochastic nonlinear cascaded systems. Kybernetika 53 (2017), 780-802. DOI 10.14736/kyb-2017-5-0780 | MR 3750103
[19] Liu, B., Huang, L.: Existence and stability of almost periodic solutions for shunting inhibitory cellular neural networks with continuously distributed delays. Phys. Lett. A 349 (2006), 177-186. DOI 10.1016/j.physleta.2005.09.023 | MR 2343183
[20] Liu, D., Wang, L.J., Pan, Y. N., Ma, H. Y.: Mean square exponential stability for discrete-time stochastic fuzzy neural networks with mixed time-varying delay. Neurocomputing 171 (2016), 1622-1628. DOI 10.1016/j.neucom.2015.06.045
[21] Mohamad, S.: Global exponential stability in continuous-time and discrete-time delayed bidirectional neural networks. Physica D 159 (2001), 233-251. DOI 10.1016/s0167-2789(01)00344-x | MR 1868528
[22] Mohamad, S., Gopalsamy, K.: Dynamics of a class of discrete-time neural networks and their continuous-time counterparts. Math. Computers Simul. 53 (2000), 1-39. DOI 10.1016/s0378-4754(00)00168-3 | MR 1777734
[23] Mohamad, S., Gopalsamy, K.: Exponential stability of continuous-time and discrete-time cellular neural networks with delays. Appl. Math. Comput. 135 (2003), 17-38. DOI 10.1016/s0096-3003(01)00299-5 | MR 1934312
[24] Mohamad, S., Naim, A. G.: Discrete-time analogues of integro-differential equations modelling bidirectional neural networks. J. Comput. Appl. Math. 138 (2002), 1-20. DOI 10.1016/s0377-0427(01)00366-1 | MR 1876679
[25] Nagamani, G., Ramasamy, S., Balasubramaniam, P.: Robust dissipativity and passivity analysis for discrete-time stochastic neural networks with time-varying delay. Complexity 21 (2014), 47-58. DOI 10.1002/cplx.21614 | MR 3457542
[26] Ou, Y., Liu, H., Si, Y., Feng, Z.: Stability analysis of discrete-time stochastic neural networks with time-varying delays. Neurocomputing 73 (2010), 740-748. DOI 10.1016/j.neucom.2009.10.017
[27] Raj, S., Ramachandran, R., Rajendiran, S., Cao, J. D.: Passivity analysis of uncertain stochastic neural network with leakage and distributed delays under impulsive perturbations. Kybernetika 54 (2018), 3-29. DOI 10.14736/kyb-2018-1-0003 | MR 3780953
[28] Şaylı, M., Yılmaz, E.: Periodic solution for state-dependent impulsive shunting inhibitory CNNs with time-varying delays. Neural Networks 68 (2015), 1-11. DOI 10.1016/j.neunet.2015.04.004
[29] Smart, D. R.: Fixed Point Theorems. Cambridge University Press, Cambridge 1980. MR 0467717
[30] Swift, R. J.: Almost periodic harmonizable processes. Georgian Math. J. 3 (1996), 275-292. DOI 10.1007/bf02280009 | MR 1388674
[31] Tudor, C.: Almost periodic solutions of affine stochastic evolutions equations. Stochastics and Stochast. Reports 38 (1992), 251-266. DOI 10.1080/17442509208833758 | MR 1274905
[32] Wang, P., Li, B., Li, Y. K.: Square-mean almost periodic solutions for impulsive stochastic shunting inhibitory cellular neural networks with delays. Neurocomputing 167 (2015), 76-82. DOI 10.1016/j.neucom.2015.04.089 | MR 2343183
[33] Wang, J., Zhang, X. M., Han, Q. L.: Event-Triggered generalized dissipativity filtering for neural networks with time-varying delays. IEEE Trans. Neural Networks Learning Systems 27 (2016), 77-88. DOI 10.1109/tnnls.2015.2411734 | MR 3465626
[34] Xiong, W., Cao, J. D.: Global exponential stability of discrete-time Cohen-Grossberg neural networks. Neurocomputing 64 (2005), 433-446. DOI 10.1016/j.neucom.2004.08.004
[35] Xiong, L. L., Cheng, J., Cao, J. D., Liu, Z. X.: Novel inequality with application to improve the stability criterion for dynamical systems with two additive time-varying delays. Applied Math. Comput. 321 (2018), 672-688. DOI 10.1016/j.amc.2017.11.020 | MR 3732406
[36] Xu, C. J., Li, P. L.: On anti-periodic solutions for neutral shunting inhibitory cellular neural networks with time-varying delays and D operator. Neurocomputing 275 (2018), 377-382. DOI 10.1016/j.neucom.2017.08.030
[37] Yang, L., Li, Y. K.: Periodic solutions for stochastic shunting inhibitory cellular neural networks with distributed delays. Advances Difference Equations 2014 (2014), 1-37. DOI 10.1186/1687-1847-2014-37 | MR 3213930
[38] Yao, L. G.: Global exponential convergence of neutral type shunting inhibitory cellular neural networks with d operator. Neural Process. Lett. 45 (2017), 401-409. DOI 10.1007/s11063-016-9529-7
[39] Zhang, T. W.: Multiplicity of positive almost periodic solutions in a delayed Hassell-Varleytype predator-prey model with harvesting on prey. Math. Meth. Appl. Sci. 37 (2014), 686-697. DOI 10.1002/mma.2826 | MR 3180630
[40] Zhang, T. W.: Almost periodic oscillations in a generalized Mackey-Glass model of respiratory dynamics with several delays. Int. J. Biomath. 7 (2014), 1450029 (22 pages). DOI 10.1002/mma.2826 | MR 3210478
[41] Zhang, T. W., Gan, X. R.: Almost periodic solutions for a discrete fishing model with feedback control and time delays. Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 150-163. DOI 10.1016/j.cnsns.2013.06.019 | MR 3142456
[42] Zhang, X. M., Han, Q. L.: Global asymptotic stability for a class of generalized neural networks with interval time-varying delays. IEEE Trans. Neural Networks 22 (2011), 1180-1192. DOI 10.1109/tnn.2011.2147331
[43] Zhang, X. M., Han, Q. L.: An overview of recent developments in Lyapunov-Krasovskii functionals and stability criteria for recurrent neural networks with time-varying delays. Neurocomputing 313 (2018), 392-401. DOI 10.1016/j.neucom.2018.06.038
[44] Zhang, X. M., Han, Q. L., Zeng, Z. G.: Hierarchical type stability criteria for delayed neural networks via canonical Bessel-Legendre inequalities. IEEE Trans. Cybernet. 48 (2018), 1660-1671. DOI 10.1109/tcyb.2017.2776283
[45] Zhang, T. W., Liao, Y. Z.: Existence and global attractivity of positive almost periodic solutions for a kind of fishing model with pure-delay. Kybernetika 53 (2017), 612-629. DOI 10.14736/kyb-2017-4-0612 | MR 3730255
[46] Zhang, H. Y., Qiu, Z. P., Xiong, L. L.: Stochastic stability criterion of neutral-type neural networks with additive time-varying delay and uncertain semi-Markov jump. Neurocomputing 333 (2019), 395-406. DOI 10.1016/j.neucom.2018.12.028
[47] Zhang, T. W., Xiong, L. L.: Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative. Applied Mathematics Letters 101 (2020), 106072. DOI 10.1016/j.aml.2019.106072 | MR 4018066
[48] Zhang, T. W., Yang, L., Xu, L. J.: Stage-structured control on a class of predator-prey system in almost periodic environment. International Journal of Control 2019 (2019), in print. DOI 10.1080/00207179.2018.1513165
[49] Zhang, Z. Q., Zhou, D. M.: Existence and global exponential stability of a periodic solution for a discrete-time interval general BAM neural networks. J. Frank. Inst. 347 (2010), 763-780. DOI 10.1016/j.jfranklin.2010.02.007 | MR 2645389
[50] Zhao, H., Sun, L., Wang, G.: Periodic oscillation of discrete-time bidirectional associative memory neural networks. Neurocomputing 70 (2007), 2924-2930. DOI 10.1016/j.neucom.2006.11.010
Partner of
EuDML logo