[1] Baczyński, M., Drygaś, P., Król, A., Mesiar, R.:
New types of ordinal sum of fuzzy implications. In: Fuzzy systems (FUZZ-IEEE), 2017 IEEE International Conference, 2017.
DOI 10.1109/fuzz-ieee.2017.8015700
[2] Baczyński, M., Jayaram, B.:
Fuzzy Implications. Studies in Fuzziness and Soft Computing 231, Springer, Berlin, Heidelberg, 2008.
MR 2428086 |
Zbl 1293.03012
[5] Drygaś, P., Król, A.:
Various kinds of fuzzy implications. In: Novel Developments in Uncertainty Represent, and Processing (K. T. Atanassov et al., eds.), Advences in Intelligent Systems and Computing 401, Springer Internat. Publ. AG, 2016, pp. 37-49.
DOI 10.1007/978-3-319-26211-6\_4
[10] Ertuğrul, Ü., Karaçal, F., Mesiar, R.:
Modified ordinal sums of triangular norms and triangular conorms on bounded lattices. Int. J. Intell. Systems 30 (2015), 807-817.
DOI 10.1002/int.21713
[14] Klement, E. P., (eds.), R. Mesiar:
Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms. Elsevier, Amsterdam 2005.
MR 2165231
[15] Klement, E. P., Mesiar, R., Pap, E.:
Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.
MR 1790096 |
Zbl 1087.20041
[16] Klement, E. P., Mesiar, R., Pap, E.:
Triangular norms as ordinal sums of semigroups in the sense of A. H. Clifford. Semigroup Forum 65 (2002), 71-82.
DOI 10.1007/s002330010127 |
MR 1903555
[19] Mas, M., Monserrat, M., Torrens, J., Trillas, E.:
A survey on fuzzy implication functions. IEEE Trans. Fuzzy Syst. 15 (2007), 1107-1121.
DOI 10.1109/tfuzz.2007.896304
[21] Mesiar, R., Mesiarová, A.:
Residual implications and left-continuous t-norms which are ordinal sum of semigroups. Fuzzy Sets and Systems 143 (2004), 47-57.
DOI 10.1016/j.fss.2003.06.008 |
MR 2060272
[27] Xie, A., Liu, H., Zhang, F., Li, C.:
On the distributivity of fuzzy implications over continuous Archimedean t-conorms and continuous t-conorms given as ordinal sums. Fuzzy Sets and Systems 205 (2012), 76-100.
DOI 10.1016/j.fss.2012.01.009 |
MR 2960108