[1] Baczyński, M., Jayaram, B.:
Fuzzy Implications. Studies in Fuzziness and Soft Computing, Springer-Verlag, Berlin Heidelberg 2008.
MR 2428086 |
Zbl 1293.03012
[6] Davey, B. A., Priestley, H. A.:
Introduction to lattices and Order. Cambridge University Press, Cambridge 1990.
MR 1058437
[12] Karaçal, F., Sağiroğlu, Y.:
Infinitely $\bigvee$-distributive t-norms on complete lattices and pseudo-complements. Fuzzy Sets Syst. 160 (2009), 32-43.
DOI 10.1016/j.fss.2008.03.022 |
MR 2469428
[13] Klement, E. P., Mesiar, R., Pap, E.:
Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.
MR 1790096 |
Zbl 1087.20041
[14] Palmeira, E. S., Bedregal, B. C.:
Extensions of fuzzy logic operators defined on bounded lattices via retraction. Comput. Math. Appl. 63 (2012), 1026-1038.
DOI 10.1016/j.camwa.2011.12.007 |
MR 2892746
[16] Palmeira, E. S., Bedregal, B. C., Mesiar, R., Fernandez, J.:
A new way to extend t-norms, t-conorms and negations. Fuzzy Sets Syst. 240 (2014), 1-21.
DOI 10.1016/j.fss.2013.05.008 |
MR 3167509
[19] Wang, Z. D., Fang, J. X:
On the direct decomposability of pseudo-t-norms, t-norms and implication operators on product lattices. Fuzzy Sets Syst. 158 (2007), 2494-2503.
DOI 10.1016/j.fss.2007.06.011 |
MR 2361663
[21] Yılmaz, Ş., Kazancı, O.:
Constructions of triangular norms on lattices by means of irreducible elements. Inform. Sci. 397-398 (2017), 110-117.
DOI 10.1016/j.ins.2017.02.041