[1] Arnold, L.:
Stochastic Differential Equations. John Wiley and Sons, New York 1973.
MR 0443083
[2] Ash, R., Doléans-Dade, C.:
Probability and Measure Theory. Academic Press, San Diego, 2000.
MR 1810041 |
Zbl 0944.60004
[4] Bertsekas, D., Shreve, S.:
Stochastic Optimal Control: The Discrete Time Case. Athena Scientific, Belmont, Massachusetts 1996.
MR 0809588 |
Zbl 0633.93001
[6] Cani, J. De:
A dynamic programming algorithm for embedded Markov chains the planning horizon is infinitely. Management. Sci. 10 (1963), 716-733.
DOI 10.1287/mnsc.10.4.716 |
MR 0169690
[7] Drenyovszki, R., Kovács, L., Tornai, K., Oláh, A., I., I. Pintér:
Bottom-up modeling of domestic appliances with Markov chains and semi-Markov processes. Kybernetika 53 (2017), 6, 1100-1117.
DOI 10.14736/kyb-2017-6-1100
[8] Dekker, R., Hordijk, A.:
Denumerable semi-Markov decision chains with small interest rates. Ann. Oper. Res. 28 (1991), 185-212.
DOI 10.1007/bf02055581 |
MR 1105173
[11] González-Hernández, J., Villarreal-Rodríguez, C.: Optimal solutions of constrained discounted semi-Markov control problems.
[13] Hu, Q., Yue, W.:
Markov Decision Processes With Their Applications. Springer-Verlag, Advances in Mechanics and Mathematics book series 14, (2008).
DOI 10.14736/kyb-2017-1-0059 |
MR 2361223
[14] Huang, X., Huang, Y.:
Mean-variance optimality for semi-Markov decision processes under first passage criteria. Kybernetika 53 (2017), 1, 59-81.
DOI 10.14736/kyb-2017-1-0059 |
MR 3638556
[15] Howard, R.:
Semi-Markovian decision processes. Bull. Int. Statist. Inst. 40 (1963), 2, 625-652.
MR 0173545
[16] Jewell, W.:
Markov-renewal programming I: formulation, finite return models, Markov-renewal programming II: infinite return models, example. Oper. Res. 11 (1963), 938-971.
DOI 10.1287/opre.11.6.938 |
MR 0163375
[18] Luque-Vásquez, F., Minjárez-Sosa, J. A.:
Semi-Markov control processes with unknown holding times distribution under a discounted criterion. Math. Methods Oper. Res. 61 (2005), 455-468.
DOI 10.1007/s001860400406 |
MR 2225824
[19] Luque-Vásquez, F., Minjárez-Sosa, J., Rosas, L.:
Semi-Markov control processes with unknown holding times distribution under an average cost criterion. Appl. Math. Optim. 61, (2010), 317-336.
DOI 10.1007/s00245-009-9086-9 |
MR 2609593
[20] Schweitzer, P.:
Perturbation Theory and Markovian Decision Processes. Ph.D. Dissertation, Massachusetts Institute of Technology, 1965.
MR 2939613
[22] Vega-Amaya, O.:
Average optimatily in semi-Markov control models on Borel spaces: unbounded costs and control. Bol. Soc. Mat. Mexicana 38 (1997), 2, 47-60.
MR 1313106
[23] Zagst, R.:
The effect of information in separable Bayesian semi-Markov control models and its application to investment planning. ZOR - Math. Methods Oper. Res. 41 (1995), 277-288.
DOI 10.1007/BF01432360 |
MR 1339493