[1] Antonio-Toledo, M. E., Sanchez, E. N., Alanis, A. Y., Florez, J., Perez-Cisneros, M. A.:
Real-time integral backstepping with sliding mode control for a quadrotor UAV. IFAC-Papers Online 51 (2018), 549-554.
DOI 10.1016/j.ifacol.2018.07.337
[2] Butt, Y. A.:
Robust stabilization of a class of nonholonomic systems using logical switching and integral sliding mode control. Alexandria Engrg. J. 57 (2018), 1591-1596.
DOI 10.1016/j.aej.2017.05.017
[3] Baker, G. J., Blackburn, J. A.:
The Pendulum: A Case Study in Physics. Oxford University Press, New York 2002.
MR 2155144
[4] Chen, Y. F., Huang, A. C.:
Adaptive control of rotary inverted pendulum system with time-varying uncertainties. Nonlinear Dynamics 76 (2014), 95-102.
DOI 10.1007/s11071-013-1112-4 |
MR 3189156
[5] Choi, J. J., Kim, J. S.:
Robust control for rotational inverted pendulums using output feedback sliding mode controller and disturbance observer. KSME Int. J. 17 (2003), 1466-1474.
DOI 10.1007/bf02982326
[6] Coban, R., Ata, B.:
Decoupled sliding mode control of an inverted pendulum on a cart: An experimental study. In: IEEE International Conference on Advanced Intelligent Mechatronics, Germany 2017.
DOI 10.1109/aim.2017.8014148
[7] Furuta, K., Yamakita, M., Kobayashi, S.:
Swing-up control of inverted pendulum using pseudo-state feedback. J. Systems Control Engrg. 206 (1992), 263-269.
DOI 10.1243/pime_proc_1992_206_341_02
[8] Gao, W., Hung, J. C.:
Variable structure control of nonlinear systems: A new approach. IEEE Trans. Industr. Electronics 40 (1993), 45-55.
DOI 10.1109/41.184820 |
MR 3860982
[9] Grasser, F., D{$^\prime$}Arrigo, A., Colombi, S., Rufer, A. C.:
Joe: a mobile, inverted pendulum. IEEE Trans. Industr. Electron. 49 (2002), 107-114.
DOI 10.1109/41.982254
[10] Hassanzadeh, I., Mobayen, S.:
Controller design for rotary inverted pendulum system using evolutionary algorithms. Math. Problems Engrg. 2011 (2011), 1-17.
DOI 10.1155/2011/572424
[11] Irfan, J., Rehan, J., Zhao, J., Rizwan, J., Abdus, S.: Mathematical model analysis and control algorithms design based on state feedback method of rotary inverted pendulum. Int. J. Research Engrg. Technol. 1 (2013), 41-50.
[12] Jia, Z., Yu, J., Mei, Y., Chen, Y., Shen, Y., Ai, X.:
Integral backstepping sliding mode control for quadrotor helicopter under external uncertain disturbances. Aerospace Science Technol. 68 (2017), 299-307.
DOI 10.1016/j.ast.2017.05.022
[13] Jadlovska, S., Sarnovsky, J.:
Modelling of classical and rotary inverted pendulum systems: A generalized approach. J. Electr. Engrg. 64 (2013), 12-19.
DOI 10.2478/jee-2013-0002
[14] Jose, A., Augustine, C., Malola, S. M., Chacko, K.:
Performance study of PID controller and LQR technique for inverted pendulum. World J. Engrg. Technol. 3 (2015), 76-81.
DOI 10.4236/wjet.2015.32008
[15] Kchaou, A., Naamane, A., Koubaa, Y., M'sirdi, N.:
Second order sliding mode-based MPPT control for photovoltaic applications. Solar Energy 155 (2017), 758-769.
DOI 10.1016/j.solener.2017.07.007
[16] Kaynak, O., Erbatur, K., Ertugrul, M.:
The fusion of computationally intelligent methodologies and sliding mode control-A survey. IEEE Trans. Industr. Electron. 48 (2001), 4-17.
DOI 10.1109/41.904539
[17] Kurode, S., Chalanga, A., Bandyopadhyay, B.:
Swing-up and stabilization of rotary inverted pendulum using sliding modes. In: Preprints of the 18th IFAC World Congress, Milano 2011.
DOI 10.3182/20110828-6-it-1002.02933
[18] Khanesar, M. A., Teshnehlab, M., Shoorehdeli, M. A.:
Fuzzy sliding mode control of rotary inverted pendulum. In: Proc. 5th IEEE International Conference on Computational Cybernetics, Tunisia 2007.
DOI 10.1109/icccyb.2007.4402019
[19] Khanesar, M. A., Teshnehlab, M., Shoorehdeli, M. A.:
Sliding mode control of rotary inverted pendulum. In: Proc. 15th Mediterannean Conference on Control and Automation, Greece 2007.
DOI 10.1109/med.2007.4433653
[21] Lu, B., Fang, Y., Sun, N.:
Sliding mode control for underactuated overhead cranes suffering from both matched and unmatched disturbances. Mechatronics 47 (2017), 116-125.
DOI 10.1016/j.mechatronics.2017.09.006
[22] Lin, X., Nie, J., Jiao, Y., Liang, K., Li, H.:
Adaptive fuzzy output feedback stabilization control for the underactuated surface vessel. Appl. Ocean Res. 74 (2018), 40-48.
DOI 10.1016/j.apor.2018.01.015
[23] Lo, J. C., Kuo, Y. H.:
Decoupled fuzzy sliding-mode control. IEEE Trans. Fuzzy Systems 6 (1998), 426-435.
DOI 10.1109/91.705510
[24] Muskinja, N., Tovornik, B.:
Swinging up and stabilization of a real inverted pendulum. IEEE Trans. Industr. Electron. 53 (2006), 631-639.
DOI 10.1109/tie.2006.870667
[25] Mei, H., He, Z.:
Study on stability control for single link rotary inverted pendulum. In: Proc. International Conference on Mechanic Automation and Control Engineering, Wuhan 2010.
DOI 10.1109/mace.2010.5536653
[26] Mon, Y. J., Lin, C. M.:
Hierarchical fuzzy sliding-mode control. In: Proc. IEEE International Conference on Fuzzy Systems, Greece 2002.
DOI 10.1109/fuzz.2002.1005070
[27] Ngo, Q. H., Nguyen, N. P., Nguyen, C. N., Tran, T. H., Ha, Q. P.:
Fuzzy sliding mode control of an offshore container crane. Ocean Engrg. 140 (2017), 125-134.
DOI 10.1016/j.oceaneng.2017.05.019
[28] Nagarale, R., Patre, B.:
Decoupled neural fuzzy sliding mode control of nonlinear systems. In: IEEE International Conference on Fuzzy Systems, Hyderabad 2013.
DOI 10.1109/fuzz-ieee.2013.6622321
[29] Oltean, S. E.:
Swing-up and stabilization of the rotational inverted pendulum using PD and fuzzy-PD controllers. Procedia Technol. 12 (2014), 57-64.
DOI 10.1016/j.protcy.2013.12.456
[30] Phuong, N., Loc, H., Tuan, T.: Control of two wheeled inverted pendulum using sliding mode technique. Int. J. Engrg. Res. Appl. 3 (2013), 1276-1282.
[33] Qureshi, M. S., Swarnkar, P., Gupta, S.:
A supervisory on-line tuned fuzzy logic based sliding mode control for robotics: An application to surgical robots. Robotics Autonom. Systems 109 (2018), 68-85.
DOI 10.1016/j.robot.2018.08.008
[34] Qian, D., Yi, J., Zhao, D.:
Hierarchical sliding mode control for a class of simo under-actuated systems. Control Cybernet. 37 (2008), 159-175.
MR 2440728
[35] Qian, D., Yi, J., Zhao, D., Hao, Y.:
Hierarchical sliding mode control for series double inverted pendulums system. In: Proc. International Conference on Intelligent Robots and Systems, Beijing 2006.
DOI 10.1109/iros.2006.282521
[36] Song, Z., Sun, K., Ling, S.:
Stabilization and synchronization for a mechanical system via adaptive sliding mode control. ISA Trans. 68 (2017), 353-366.
DOI 10.1016/j.isatra.2017.02.013
[37] Solanes, J. E., Gracia, L., Munoz-Benavent, P., Miro, J. V., Girbes, V., Tornero, J.:
Human-robot cooperation for robust surface treatment using non-conventional sliding mode control. ISA Trans. 80 (2018), 528-541.
DOI 10.1016/j.isatra.2018.05.013
[39] Sirisha, V., Junghare, A. S.:
A comparative study of controllers for stabilizing a rotary inverted pendulum. Int. J. Chaos, Control, Modell. Simul. 3 (2014), 1-13.
DOI 10.5121/ijccms.2014.3201
[40] Slotine, J. J. E., Li, W.:
Applied Nonlinear Control. Prentice Hall International Inc., 1991.
Zbl 0753.93036
[42] Tuan, L. A., Lee, S. G., Nho, L. C., Cuong, H. M.:
Robust controls for ship-mounted container cranes with viscoelastic foundation and flexible hoisting cable. Proc. Inst. Mechan. Engineers, Part I: J. Systems Control Engrg. 229 (2015), 662-674.
DOI 10.1177/0959651815573903
[43] Tuan, L. A., Cuong, H. M., Lee, S. G., Nho, L. C., Moon, K.:
Nonlinear feedback control of container crane mounted on elastic foundation with the flexibility of suspended cable. J. Vibration Control 22 (2016), 3067-3078.
DOI 10.1177/1077546314558499 |
MR 3527669
[44] Utkin, V. I., Korovin, S. K.:
Application of sliding mode to static optimization. Automatic Remote Control 4 (1972), 570-579.
MR 0738683
[45] Utkin, V. I., Yagn, K. D.:
Methods for construction of discontinuity planes in multidimensional variable structure systems. Automat. Remote Control 39 (1978), 72-77.
MR 0533368
[48] Wu, Y. J., Li, G. F.:
Adaptive disturbance compensation finite control set optimal control for PMSM systems based on sliding mode extended state observer. Mechan. Systems Signal Process. 98 (2018), 402-414.
DOI 10.1016/j.ymssp.2017.05.007
[49] Wu, A., Zhang, X., Zhang, Z.: A control system based on the Lagrange modeling method for a single link rotary inverted pendulum. Engrg. Sci. 7 (2005), 11-15.
[50] Wen, J., Shi, Y., Lu, X.:
Stabilizing a rotary inverted pendulum based on logarithmic Lyapunov function. J. Control Science Engrg. 2017 (2017), 1-11.
DOI 10.1155/2017/4091302 |
MR 3622180
[52] Yue, M., An, C., Du, Y., Sun, J.:
Indirect adaptive fuzzy control for a nonholonomic/underactuated wheeled inverted pendulum vehicle based on a data-driven trajectory planner. Fuzzy Sets Systems 290 (2016), 158-177.
DOI 10.1016/j.fss.2015.08.013 |
MR 3460256
[53] Zhang, J., Zhang, Q., Wang, Y.:
A new design of sliding mode control for Markovian jump systems based on stochastic sliding surface. Inform. Sci. 391 (2017), 9-27.
DOI 10.1016/j.ins.2017.02.005
[54] Zhao, Y., Huang, P., Zhang, F.:
Dynamic modeling and super-twisting sliding mode control for tethered space robot. Acta Astronautica 143 (2018), 310-321.
DOI 10.1016/j.actaastro.2017.11.025