[2] Baczyński, M., Jayaram, B.:
Fuzzy Implications. Studies in Fuzziness and Soft Computing, vol. 231, Springer, Berlin, Heidelberg, 2008.
MR 2428086 |
Zbl 1293.03012
[4] Calvo, T., Mayor, G., Mesiar, R.:
Aggregation operators. New Trends and Applications. Studies in Fuzziness and Soft Computing, Physica-Verlag HD, Heidelberg, 2002.
DOI 10.1007/978-3-7908-1787-4 |
MR 1936384
[5] Drygaś, P., Ruiz-Aguilera, D., Torrens, J.:
A characterization of a class of uninorms with continuous underlying operators. Fuzzy Sets and Systems 287 (2016), 137-153.
DOI 10.1016/j.fss.2015.07.015 |
MR 3447023
[8] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.:
Aggregation Functions. Cambridge University Press, 2009.
MR 2538324 |
Zbl 1206.68299
[9] Hliněná, D., Kalina, M., Král, P.:
Pre-orders and orders generated by conjunctive uninorms. In: Inf. Proc. Manage. of Uncert. Knowledge-Based Syst. Communications in Computer and Inf. Sci. 444 (2014), pp. 307-316.
MR 3616458
[11] Karaçal, F., Kesicioğlu, M. N.:
A T-partial order obtained from t-norms. Kybernetika 47 (2011), 300-314.
MR 2828579 |
Zbl 1245.03086
[12] Kesicioğlu, M. N.:
Some notes on the partial orders induced by a uninorm and a nullnorm in a bounded lattice. Fuzzy Sets and Systems 346 (2018), 59-71.
DOI 10.1016/j.fss.2014.10.006 |
MR 3812757
[16] Klement, E. P., Mesiar, R., Pap, E.:
Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.
MR 1790096 |
Zbl 1087.20041
[19] Mas, M., Massanet, S., Ruiz-Aguilera, D., Torrens, J.:
A survey on the existing classes of uninorms. J. Intell. Fuzzy Syst. 29 (2015), 1021-1037.
DOI 10.3233/ifs-151728 |
MR 3414365