Summary: We consider Littlewood-Paley functions associated with a non-isotropic dilation group on $\Bbb R^n$. We prove that certain Littlewood-Paley functions defined by kernels with no regularity concerning smoothness are bounded on weighted $L^p$ spaces, $1<p<\infty $, with weights of the Muckenhoupt class. This, in particular, generalizes a result of N. Rivière (1971).\looseness -1
[1] Benedek, A., Calderón, A. P., Panzone, R.: Convolution operators on Banach space valued functions. Proc. Natl. Acad. Sci. USA 48 (1962), 356-365. DOI 10.1073/pnas.48.3.356 | MR 0133653 | Zbl 0103.33402
[9] Duoandikoetxea, J., Francia, J. L. Rubio de: Maximal and singular integral operators via Fourier transform estimates. Invent. Math. 84 (1986), 541-561. DOI 10.1007/BF01388746 | MR 0837527 | Zbl 0568.42012
[10] Duoandikoetxea, J., Seijo, E.: Weighted inequalities for rough square functions through extrapolation. Stud. Math. 149 (2002), 239-252. DOI 10.4064/sm149-3-2 | MR 1890732 | Zbl 1015.42016
[12] Garcia-Cuerva, J., Francia, J. L. Rubio de: Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies 116, Notas de Matemática 104, North-Holland, Amsterdam (1985). DOI 10.1016/s0304-0208(08)x7154-3 | MR 0807149 | Zbl 0578.46046
[20] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series 30, Princeton University Press, Princeton (1970). DOI 10.1515/9781400883882 | MR 0290095 | Zbl 0207.13501