Previous |  Up |  Next

Article

Keywords:
weakly-supplemented subgroup; complemented subgroup; solvable group
Summary:
A subgroup $H$ of a finite group $G$ is weakly-supplemented in $G$ if there exists a proper subgroup $K$ of $G$ such that $G=HK$. In this paper, some interesting results with weakly-supplemented minimal subgroups or Sylow subgroups of $G$ are obtained.
References:
[1] Arad, Z., Ward, M. B.: New criteria for the solvability of finite groups. J. Algebra 77 (1982), 234-246. DOI 10.1016/0021-8693(82)90288-5 | MR 0665175 | Zbl 0486.20018
[2] Doerk, K., Hawkes, T.: Finite Soluble Groups. De Gruyter Expositions in Mathematics 4, de Gruyter, Berlin (1992). DOI 10.1515/9783110870138 | MR 1169099 | Zbl 0753.20001
[3] Guralnick, R. M.: Subgroups of prime power index in a simple group. J. Algebra 81 (1983), 304-311. DOI 10.1016/0021-8693(83)90190-4 | MR 0700286 | Zbl 0515.20011
[4] Hall, P.: A characteristic property of soluble groups. J. Lond. Math. Soc. 12 (1937), 198-200. DOI 10.1112/jlms/s1-12.2.198 | MR 1575073 | Zbl 0016.39204
[5] Hall, P.: Complemented groups. J. London Math. Soc. 12 (1937), 201-204. DOI 10.1112/jlms/s1-12.2.201 | MR 1575074 | Zbl 0016.39301
[6] Huppert, B.: Endliche Gruppen I. Springer, Berlin (1967), German. DOI 10.1007/978-3-642-64981-3 | MR 0224703 | Zbl 0217.07201
[7] Kong, Q., Liu, Q.: The influence of weakly-supplemented subgroups on the structure of finite groups. Czech. Math. J. 64 (2014), 173-182. DOI 10.1007/s10587-014-0092-y | MR 3247453 | Zbl 1321.20021
Partner of
EuDML logo