Previous |  Up |  Next

Article

Keywords:
robust optimal control; inverse optimal control; control Lyapunov function; extended state observer; flexible spacecraft
Summary:
This paper presents a novel robust optimal control approach for attitude stabilization of a flexible spacecraft in the presence of external disturbances. An optimal control law is formulated by using concepts of inverse optimal control, proportional-integral-derivative control and a control Lyapunov function. A modified extended state observer is used to compensate for the total disturbances. High-gain and second order sliding mode algorithms are merged to obtain the proposed modified extended state observer. The second method of Lyapunov is used to demonstrate its properties including the convergence rate and ultimate boundedness of the estimation error. The proposed controller can stabilize the attitude control system and minimize a cost functional. Moreover, this controller achieves robustness against bounded external disturbances and the disturbances caused by the elastic vibration of flexible appendages. Numerical simulations are provided to demonstrate the performance of the developed controller.
References:
[1] Bharadwaj, S., Osipchuk, M., Mease, K. D., Park, F. C.: Geometry and inverse optimality in global attitude stabilization. J. Guidance Control Dynamic 21 (1998), 930-939. DOI 10.2514/2.4327
[2] Cloutier, J. R: State-Dependent Riccati equation techniques: An overview. In: Proc. American Control Conference, Albuquerque 1997, pp. 932-936. DOI 10.1109/acc.1997.609663
[3] DiGennaro, S.: Output stabilization of flexible spacecraft with active vibration supression. IEEE Aerop. Electron. Syst. Mag. 39 (2003), 747-759. DOI 10.1109/taes.2003.1238733
[4] Erdong, J., Zhaowei, S.: Passivity-based control for a flexible spacecraft in the presence of disturbance. Int. J. Non-linear Mechanics 45 (2010), 348-356. DOI 10.1016/j.ijnonlinmec.2009.12.008
[5] Freeman, R. A., Kokotović, P. V.: Inverse optimality in robust stablilzation. SIAM J. Control Optim. 34 (1996), 1365-1391. DOI 10.1137/s0363012993258732 | MR 1395839
[6] Guo, B. Z., Zhao, Z.: On the convergence of an extended state observer for nonlinear systems with uncertainty. Syst. Control Lett. 60 (2011), 420-430. DOI 10.1016/j.sysconle.2011.03.008 | MR 2841486
[7] Han, J., Huang, Y.: Analysis and design for the second order nonlinear continuous extended states observer. Chinese Sci. Bull. 45 (2000), 1938-1944. DOI 10.1007/bf02909682 | MR 1802749
[8] Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56 (2009), 900-906. DOI 10.1109/tie.2008.2011621
[9] Horri, N. M, Palmer, P., Roberts, M.: Gain scheduled inverse optimal satellite attitude control. IEEE Trans. Aerospace Electron. Systems 48 (2012), 2437-2457. DOI 10.1109/taes.2012.6237602
[10] Hu, Q.: Sliding mode attitude control with $L_{2}-$gain performance and vibration reduction of flexible spacecraft with actuator dynamics. Acta Astronautica 67 (2010), 572-583. DOI 10.1016/j.actaastro.2010.04.018
[11] Hu, Q., Ma, G.: Varaible structure control and active vibration suppression of flexible spacecraft during attitude maneuver. Aerospace Science Technol. 9 (2005), 307-317. DOI 10.1016/j.ast.2005.02.001
[12] Khalil, H. K.: Nonlinear Systems. Prentice-Hall Press, 1996. Zbl 1194.93083
[13] Krstić, M., Kokotović, P. V.: Control Lyapunov functions for adaptive nonlinear stabilization. Systems Control Lett. 26 (1995), 17-23. DOI 10.1016/0167-6911(94)00107-7 | MR 1347637
[14] Krstić, M., Li, Z. H.: Inverse optimal design of input-to-state stabilizing nonlinear controllers. IEEE Trans. Automat. Control 43 (1998), 336-350. DOI 10.1109/9.661589 | MR 1614799
[15] Krstić, M., Tsiotras, M. P.: Inverse optimal stabilization of a rigid spacecraft. IEEE Trans. Automat. Control 44 (1999), 1042-1045. DOI 10.1109/9.763225 | MR 1690553
[16] Lu, K., Xia, Y., FU, M.: Controller design for rigid spacecraft attitude tracking with actuator saturation. Inform. Sci. 220 (2013), 343-366. DOI 10.1016/j.ins.2012.07.039 | MR 2993689
[17] Luo, W., Chung, Y. C., Ling, K. V.: Inverse optimal adaptive control for attitude tracking spacecraft. IEEE Trans. Automat. Control 50 (2005), 1639-1654. DOI 10.1109/tac.2005.858694 | MR 2182713
[18] Park, Y.: Robust and optimal attitude stabilization of spacecraft with external disturbances. Aerospace Sci. Technol. 9 (2005), 253-259. DOI 10.1016/j.ast.2005.01.002
[19] Park, Y.: Inverse optimal and robust nonlinear attitude control of rigid spacecraft. Aerospace Sci. Technol. 28 (2013), 257-265. DOI 10.1016/j.ast.2012.11.006
[20] Primb, J. A., Nevistić, V., Doyle, J. C.: Nonlinear optimal control : a control Lyapunov function and receding horizon perspective. Asian J. Control 1 (1999), 14-24. DOI 10.1111/j.1934-6093.1999.tb00002.x
[21] Pukdeboon, C., Zinober, A. S. I.: Control Lyapunov function optimal sliding mode controllers for attitude tracking of spacecraft. J. Franklin Inst. 349 (2012), 456-475. DOI 10.1016/j.jfranklin.2011.07.006 | MR 2890410
[22] Pukdeboon, C.: Optimal sliding mode controllers for attitude stabilization of flexible spacecraft. Math. Problems Engrg. 2011 (2011) Article ID 863092, 1-20. DOI 10.1155/2011/863092 | MR 2811943
[23] Sepulchre, R., Freeman, R. A., Kokotović, P. V.: Constructive Nonlinear Control. Springer-Verlag, New York 1997. DOI 10.1007/978-1-4471-0967-9 | MR 1481435
[24] Sharma, R., Tewari, A.: Optimal nonlinear tracking of spacecraft attitude maneuvers. IEEE Trans. Control Systems Technol. 12 (2004), 677-682. DOI 10.1109/tcst.2004.825060
[25] Shuster, M. D.: A survey of attitude representations. J. Astronaut. Sci. 41 (1993), 439-517. MR 1263144
[26] Sontag, E. D.: A universal construction of Artstein's theorem on bonlinear stabilization. Systems Control Lett. 13 (1989), 117-123. DOI 10.1016/0167-6911(89)90028-5 | MR 1014237
[27] Sontag, E. D.: Mathematical Control Theory, Deterministic Finite Dimensional Systems. Second edition. Springer-Verlag, New York 1998. DOI 10.1007/978-1-4612-0577-7 | MR 1640001
[28] Stansbery, D. T., Cloutier, J. R: Position and attitude control of a spacecraft using the state-dependent Riccati equation techniques. In: Proc. American Control Conference, Chicago 2000. DOI 10.1109/acc.2000.879525
[29] Xin, M., Balakrishnan, S. N.: State dependent Riccati equation based spacecraft attitude control. In: Proc. 40th AIAA Aerospace Sciences Meeting and Exhibit, Reno 2002. DOI 10.2514/6.2002-1071
[30] Xin, M., Balakrishnan, S. N., Stansbery, D. T.: Spacecraft position and attitude control with $\theta-D$ technique. In: Proc. 42th AAIA Aerospace Sciences Meeting and Exhibit, Reno 2004. DOI 10.2514/6.2004-540
[31] Xin, M., Pan, H.: Nonlinear optimal control of spacecraft approaching a tumbling target. Aerospace Sci. Technol. 15 (2011), 79-89. DOI 10.1016/j.ast.2010.05.009
[32] Utkin, V. I.: Sliding Modes in Control and Optimization. Springer-Verlag, Berlin 1992. MR 1295845 | Zbl 0748.93044
[33] Wertz, J. R.: Spacecraft Attitude Determination and Control. Kluwer Academic, Dordrecht, London 1978.
Partner of
EuDML logo