[1] Aguilar-Leal, O., Fuentes, R.Q., Chairez, I., Garcia, A., Huegel, J. C.:
Distributed parameter system identification using finite element differential neural networks. Applied Soft Computing 43 (2016), 663-642.
DOI 10.1016/j.asoc.2016.01.004
[2] Baille, A., Kittas, C., Katsoulas, N.:
Influence of whitening on greenhouse microclimate and crop energy partitioning. Agricultural Forest Meteorology 107 (2001), 4, 293-306.
DOI 10.1016/s0168-1923(01)00216-7
[3] Chairez, I., Fuentes, R., Poznyak, A., Poznyak, T., Escudero, M., Viana, L.:
DNN-state identification of 2D distributed parameter systems. Int. J. Systems Sci. 43 (2012), 2, 296-307.
DOI 10.1080/00207721.2010.495187 |
MR 2862244
[4] Chen, J., Cai, Y., Xu, F., Hu, H., Ai, Q.:
Analysis and optimization of the fan-pad evaporative cooling system for greenhouse based on CFD. Advances Mechanical Engrg. 6 (2014), 712-740.
DOI 10.1155/2014/712740
[5] Evans, L. C.:
Partial Differential Equations. American Mathematical Soc., 2010.
MR 2597943
[6] Fargues, J., Smits, N., Rougier, M., Boulard, T., Ridray, G., Lagier, J., Jeannequin, B., Fatnassi, H., Mermier, M.:
Effect of microclimate heterogeneity and ventilation system on entomopathogenic hyphomycete infection of Trialeurodes vaporariorum (Homoptera: Aleyrodidae) in Mediterranean greenhouse tomato. Biolog. Control 32 (2005), 3, 461-472.
DOI 10.1016/j.biocontrol.2004.12.008
[7] Ferreira, P. M., Faria, E. A., Ruano, A. E.:
Neural network models in greenhouse air temperature prediction. Neurocomputing 43 (2002), 1, 51-75.
DOI 10.1016/s0925-2312(01)00620-8
[8] Fuentes, R., Poznyak, A., Chairez, I., Franco, M., Poznyak, T.:
Continuous neural networks applied to identify a class of uncertain parabolic partial differential equations. Int. J. Model. Simul. Sci. Comput. 1 (2010), 4, 485-508.
DOI 10.1142/s1793962310000304
[9] Hasni, A., Taibi, R., Draoui, B., Boulard, T.:
Optimization of greenhouse climate model parameters using particle swarm optimization and genetic algorithms. Energy Procedia 6 (2011), 371-380.
DOI 10.1016/j.egypro.2011.05.043
[11] Perez-Cruz, J. H., Alanis, A., Rubio, J., Pacheco, J.:
System identification using multilayer differential neural networks: a new result. J. Appl. Math. 2012 (2012), 1-20.
DOI 10.1155/2012/529176 |
MR 2910916
[12] Perez-Gonzalez, A., Begovich, O., Ruiz-León, J.: Modeling of a greenhouse prototype using PSO algorithm based on a LabView TM application. In: Proc. 2014 International Conference on Electrical Engineering, Computing Science and Automatic Control 1-6.
[13] Poznyak, A. S., Sanchez, E. N., Wen, Y.:
Differential Neural Networks for Robust Nonlinear Control: Identification, State Estimation and Trajectory Tracking. World Scientific, 2001.
DOI 10.1142/4703
[15] Strauss, W. A.:
Partial Differential Equations: An Introduction. John Wiley and Sons Inc, 2007.
MR 2398759
[16] Zhang, X. M., Han, Q. L.:
Global asymptotic stability for a class of generalized neural networks with interval time-varying delays. IEEE Trans. Neural Networks 22 (2011), 8, 1180-1192.
DOI 10.1109/tnn.2011.2147331 |
MR 3465626
[17] Zhang, X. M., Han, Q. L.:
State estimation for static neural networks with time-varying delays based on an improved reciprocally convex inequality. IEEE Trans. Neural Networks Learning Systems 29 (2018), 4, 1376-1381.
DOI 10.1109/tnnls.2017.2661862
[18] Zienkiewicz, O. C., Taylor, R. L., Zhu, J. Z:
The Finite Element Method: Its Basis and Fundamentals. Elsevier Butterworth-Heinemann, 2005.
MR 3292660