[1] Amato, F., Ambrosino, R., Ariola, M., Cosentino, C., Tommasi, G. De:
Finite-Time Stability and Control. Springer Verlag, 2014.
MR 3157178
[2] Amato, F., Ambrosino, R., Ariola, M., Tommasi, G. De:
Robust finite-time stability of impulsive dynamical linear systems subject to norm-bounded uncertainties. Int. J. Robust Nonlinear Control 21 (2011), 1080-1092.
DOI 10.1002/rnc.1620 |
MR 2839840
[3] Amato, F., Ariola, M., Cosentino, C.:
Finite-time stability of linear time-varying systems: Analysis and controller design. IEEE Trans. Automat. Control 55 (2010), 4, 1003-1008.
DOI 10.1109/tac.2010.2041680 |
MR 2654445
[5] Amato, F., Ariola, M., Dorato, P.:
Finite-time control of linear systems subject to parametric uncertanties and disturbances. Automatica 37 (2001), 1459-1463.
DOI 10.1016/s0005-1098(01)00087-5
[6] Amato, F., Cosentino, C., Tommasi, G. De, Pironti, A.:
New conditions for the finite-time stability of stochastic linear time-varying systems. In: Proc. European Control Conference, (2015), pp. 1213-1218.
DOI 10.1109/ecc.2015.7330706
[7] Amato, F., Cosentino, C., Tommasi, G. De, Pironti, A.:
The mixed robust $H_\infty$/FTS control problem. Asian J. Control 18 (2016), 3, 828-841.
DOI 10.1002/asjc.1196 |
MR 3502465
[8] Amato, F., Tommasi, G. De, Pironti, A.:
Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems. Automatica 49 (2013), 8, 2546-2550.
DOI 10.1016/j.automatica.2013.04.004 |
MR 3072649
[9] Amato, F., Tommasi, G. De, Mele, A., Pironti, A.:
New conditions for annular finite-time stability of linear systems. In: IEEE 55th Conference on Decision and Control (2016), pp. 4925-4930.
DOI 10.1109/cdc.2016.7799022
[10] Ambrosino, R., Calabrese, F., Cosentino, C., Tommasi, G. De:
Sufficient conditions for finite-time stability of impulsive dynamical systems. IEEE Trans. Automat. Control 54 (2009), 4, 861-865.
DOI 10.1109/tac.2008.2010965 |
MR 2514824
[11] Anderson, B. D .O., Moore, J. B.:
Optimal Control: Linear Quadratic Methods. Englewood Cliffs, Prentice-Hall, NJ 1989.
MR 0335000
[12] Chen, J., Li, Q., Liu, C.:
Guaranteed cost control of uncertain impulsive switched systems with nonlinear disturbances. In: UKACC International Conference on Control, (2014).
DOI 10.1109/control.2014.6915131
[13] Corless, M.:
Variable Structure and Lyapunov Control, chapter Robust stability analysis and controller design with quadratic Lyapunov functions. Springer Verlag, (A. S. I. Zinober, ed.), London (1994).
DOI 10.1007/bfb0033675 |
MR 1257919
[14] Dorato, P.: Short time stability in linear time-varying systems. In: Proc. IRE International Convention Record Part 4, (1961), pp. 83-87.
[15] Golestani, M., Mobayen, S., Tchier, F.:
Adaptive finite-time tracking control of uncertain non-linear n-order systems with unmatched uncertainties. IET Control Theory Appl. 10 (2016), 1675-1683.
DOI 10.1049/iet-cta.2016.0163 |
MR 3585276
[17] Li, L., Yan, G.:
Sufficient optimality conditions for impulsive and switching optimal control problems. In: Proc. 34th Chinese Control Conference, (2015).
DOI 10.1109/chicc.2015.7260012
[18] Mastellone, S., Dorato, P., Abdallah, C. T.:
Finite-time stability of discrete-time nonlinear systems: analysis and design. In: Proc. IEEE Conference on Decision and Control, (2004), pp. 2572-2577.
DOI 10.1109/cdc.2004.1428845
[19] Mobayen, S., Tchier, F.:
A new LMI-based robust finite-time sliding mode control strategy for a class of uncertain nonlinear systems. Kybernetika 51 (2015), 1035-1048.
DOI 10.14736/kyb-2015-6-1035 |
MR 3453684
[20] Moheimani, S. O. R., Petersen, I. R.:
Optimal guaranteed cost control of uncertain systems via static and dynamic output feedback. Automatica 32 (1996), 4, 575-579.
DOI 10.1016/0005-1098(95)00178-6 |
MR 1386704
[21] Petersen, I. R., McFarlane, D. C.:
Optimal guaranteed cost control of uncertain linear systems. In: American Control Conference (1992), pp. 2929-2930.
DOI 10.23919/acc.1992.4792682 |
MR 1293449
[23] Qayyum, A.: Finite time output regulation of sampled data linear systems through impulsive observer. In: Proc. SICE International Symposium on Control Systems (2017), pp. 62-66.
[24] Qayyum, A., Tommasi, G. De:
Finite-time state estimation of sampled output impulsive dynamical linear system. In: Proc. 24th Mediterranean Conference on Control and Automation (2016), pp. 154-158.
DOI 10.1109/MED.2016.7535975
[25] Qayyum, A., Malik, M. B., Tommasi, G. De, Pironti, A.:
Finite time estimation of a linear system based on sampled measurement through impulsive observer. In: Proc. 28th Chinese Control and Decision Conference (2016), pp. 978-981.
DOI 10.1109/CCDC.2016.7531125
[26] Qayyum, A., Pironti, A.:
Finite time stability with guaranteed cost control for linear systems. In: Proc. 21st International Conference on System Theory, Control and Computing (2017).
DOI 10.1109/ICSTCC.2017.8107124
[27] Qayyum, A., Salman, M., Malik, M. B.:
Receding horizon observer for linear time-varying systems. In: Trans. Inst. Measurement and Control (2018).
DOI 10.1177/0142331218805153
[29] Vaseghi, B., Pourmina, M. A., Mobayen, S.:
Finite-time chaos synchronization and its application in wireless sensor networks. In: Trans. Inst. Measurement and Control (2017).
DOI 10.1177/0142331217731617
[30] Xu, H. L., Teo, K. L., Liu, X. Z.:
Robust stability analysis of guaranteed cost control for impulsive switched systems. IEEE Trans. Automat. Contrpl 38 (2008), 5, 1419-1422.
DOI 10.1109/tsmcb.2008.925747
[31] Yan, Z., Zhang, G., Zhang, W.:
Finite-time stability and stabilization of linear ito stochastic systems with state and control dependent noise. Asian J. Control 15 (2013), 270-281.
DOI 10.1002/asjc.531 |
MR 3015775
[32] Yan, Z., Zhang, W., Zhang, G.:
Finite-time stability and stabilization of it's stochastic systems with markovian switching: Mode-dependent parameter approach. IEEE Trans. Automat. Control 60 (2015), 9, 2428-2433.
DOI 10.1109/tac.2014.2382992 |
MR 3393133
[33] Zhao, S., Sun, J., Liu, L.:
Finite-time stability of linear time-varying singular systems with impulsive effects. Int. J. Control 81 (2008), 11, 1824-1829.
DOI 10.1080/00207170801898893 |
MR 2462577