Previous |  Up |  Next

Article

Keywords:
contrast measures; image enhancement; enhancement quality measures; medical image enhancement
Summary:
A survey of local image contrast measures is presented and a new contrast measure for measuring the local contrast of regions of interest is proposed. The measures validation is based on the gradual objective contrast decreasing on medical test images in both grayscale and color. The performance of the eleven most frequented contrast measures is mutually compared and their robustness to different types of image degradation is analyzed. Since the contrast measures can be both global, regional and local pixelwise, a simple way of adapting the contrast measures for regions of interest is proposed.
References:
[1] Agaian, S. S., Panetta, K., Grigoryan, A. M.: Transform-based image enhancement algorithms with performance measure. IEEE Trans. Image Process. 10 (2001), 3, 367-382. DOI 10.1109/83.908502
[2] Agaian, S. S., Silver, B., Panetta, K. A.: Transform coefficient histogram-based image enhancement algorithms using contrast entropy. IEEE Trans. Image Process. 16 (2007), 3, 741-758. DOI 10.1109/tip.2006.888338 | MR 2460190
[3] Bhateja, V., Misra, M., Urooj, S.: Non-linear polynomial filters for edge enhancement of mammogram lesions. Comp. Meth. Programs Biomedicine 129 (2016), 125-134. DOI 10.1016/j.cmpb.2016.01.007
[4] Burkhardt, D. A., Gottesman, J., Kersten, D., Legge, G. E.: Symmetry and constancy in the perception of negative and positive luminance contrast. JOSA A 1 (1984), 3, 309-316. DOI 10.1364/josaa.1.000309
[5] Chang, C.-M., Laine, A.: Coherence of multiscale features for enhancement of digital mammograms. IEEE Trans. Inform. Technol. Biomedicine 3 (1999), 1, 32-46. DOI 10.1109/4233.748974
[6] Dippel, S., Stahl, M., Wiemker, R., Blaffert, T.: Multiscale contrast enhancement for radiographies: Laplacian pyramid versus fast wavelet transform. IEEE Trans. Medical Imaging 21 (2002), 4, 343-353. DOI 10.1109/tmi.2002.1000258
[7] Erdem, C. E., Sankur, B., Tekalp, A. M.: Performance measures for video object segmentation and tracking. IEEE Trans. Image Process. 13 (2004), 7, 937-951. DOI 10.1109/tip.2004.828427
[8] Grim, J., Somol, P., Haindl, M., Daneš, J.: Computer-aided evaluation of screening mammograms based on local texture models. IEEE Trans. Image Process. 18 (2009), 4, 765-773. DOI 10.1109/tip.2008.2011168 | MR 2662215
[9] Haun, A., Peli, E.: Perceived contrast in complex images. J. Vision 13 (2013), 3, 2013. DOI 10.1167/13.13.3
[10] King-Smith, P. E., Kulikowski, J.: Pattern and flicker detection analysed by subthreshold summation. J. Physiology 249 (1975), 3, 519. DOI 10.1113/jphysiol.1975.sp011028
[11] Levine, M. D., Nazif, A. M.: Dynamic measurement of computer generated image segmentations. IEEE Trans. Pattern Analysis Machine Intell. 7 (1985), 155-164. DOI 10.1109/tpami.1985.4767640
[12] Mencattini, A., Salmeri, M., Lojacono, R., Frigerio, M., Caselli, F.: Mammographic images enhancement and denoising for breast cancer detection using dyadic wavelet processing. IEEE Trans Instrument. Measurement 57 (2008), 7, 1422-1430. DOI 10.1109/tim.2007.915470
[13] Michelson, A. A.: Studies in Optics. University of Chicago Press, Chicago 1927.
[14] Moreira, I. C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M. J., Cardoso, J. S.: Inbreast: toward a full-field digital mammographic database. Academic Radiology 19 (2012), 2, 236-248. DOI 10.1016/j.acra.2011.09.014
[15] Panetta, K., Zhou, Y., Agaian, S., Jia, H.: Nonlinear unsharp masking for mammogram enhancement. IEEE Trans. Inform. Technol. Biomedicine 15 (2011), 6, 918-928. DOI 10.1109/titb.2011.2164259
[16] Peli, E.: Contrast in complex images. JOSA A 7 (1990), 10, 2032-2040. DOI 10.1364/josaa.7.002032
[17] Qi, H., Diakides, N. A.: Thermal infrared imaging in early breast cancer detection - a survey of recent research. In: Proc. 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 2, IEEE 2003, pp. 1109-1112. DOI 10.1109/iembs.2003.1279442
[18] Sakellaropoulos, P., Costaridou, L., Panayiotakis, G.: A wavelet-based spatially adaptive method for mammographic contrast enhancement. Physics Medicine Biology 48 (2003), 6, 787. DOI 10.1088/0031-9155/48/6/307
[19] Salvado, J., Roque, B.: Detection of calcifications in digital mammograms using wavelet analysis and contrast enhancement. In: IEEE International Workshop on Intelligent Signal Processing 2005, IEEE 2005, pp. 200-205. DOI 10.1109/wisp.2005.1531658
[20] Simone, G., Pedersen, M., Hardeberg, J. Y.: Measuring perceptual contrast in digital images. J. Visual Commun. Image Representation 23 (2012), 3, 491-506. DOI 10.1016/j.jvcir.2012.01.008
[21] Tadmor, Y., Tolhurst, D.: Calculating the contrasts that retinal ganglion cells and \{LGN\} neurones encounter in natural scenes. Vision Research 40 (2000), 22, 3145-3157. DOI 10.1016/s0042-6989(00)00166-8
[22] Tang, J., Liu, X., Sun, Q.: A direct image contrast enhancement algorithm in the wavelet domain for screening mammograms. IEEE J. Selected Topics Signal Process. 3 (2009), 1, 74-80. DOI 10.1109/jstsp.2008.2011108
[23] Taylor, P., Champness, J., Given-Wilson, R., Johnston, K., Potts, H.: Impact of computer-aided detection prompts on the sensitivity and specificity of screening mammography. Health Technol. Assessment 9 (2005), 6. DOI 10.3310/hta9060
[24] Thangavel, K., Karnan, M., Sivakumar, R., Mohideen, A.: Cad system for preprocessing and enhancement of digital mammograms. Graphics, Vision Image Process. xx (2007), 55-60.
[25] Tweed, T., Miguet, S.: Automatic detection of regions of interest in mammographies based on a combined analysis of texture and histogram. In: Proc. 16th International Conference on Pattern Recognition 2002, Vol. 2, Los Alamitos 2002. IEEE Computer Soc., pp. 448-452. DOI 10.1109/icpr.2002.1048335
[26] Wang, H., Li, J.-B., Wu, L., Gao, H.: Mammography visual enhancement in cad-based breast cancer diagnosis. Clinical Imaging 37 (2013), 273-282. DOI 10.1016/j.clinimag.2012.04.018
[27] Weber, E. H.: The Sense of Touch. Academic Press, 1978.
[28] Whittle, P.: Increments and decrements: Luminance discrimination. Vision Res. 26 (1986), 10, 1677-1691. DOI 10.1016/0042-6989(86)90055-6
[29] Yan, Z., Zhang, Y., Liu, B., Zheng, J., Lu, L., Xie, Y., Liang, Z., Li, J.: Extracting hidden visual information from mammography images using conjugate image enhancement software. In: IEEE International Conference on Information Acquisition, IEEE Engineering in Medicine and Biology Society, 2005, pp. 4775-4778. DOI 10.1109/icia.2005.1635092
Partner of
EuDML logo