[1] Ahmad, M. R.:
Location-invariant multi-sample $U$-tests for covariance matrices with large dimension. Scand. J. Stat. 44 (2017b), 500-523.
DOI 10.1111/sjos.12262 |
MR 3658524
[2] Ahmad, M. R.:
Testing homogeneity of several covariance matrices and multi-sample sphericity for high-dimensional data under non-normality. Comm. Stat. Theory Methods 46 (2017a), 3738-3753.
DOI 10.1080/03610926.2015.1073310 |
MR 3590835
[4] Anderson, T.W.:
An Introduction to Multivariate Statistical Analysis. Third edition. Wiley, NY 2003.
MR 1990662
[6] Cai, T., Liu, W., Xia, Y.:
Two-sample covariance matrix testing and support recovery in high-dimensional and sparse settings. J. Amer. Statist. Assoc. 108 (2013), 265-277.
DOI 10.1080/01621459.2012.758041 |
MR 3174618
[7] Fujikoshi, Y., Ulyanov, V. V., Shimizu, R.:
Multivariate statistics: High-dimensional and large-sample approximations. Wiley, NY 2010.
MR 2640807
[11] Lee, A. J.: $U$-statistics: Theory and Practice. CRC Press, Boca Raton 1990.
[14] Liu, B., Xu, L., Zheng, S., Tian, G-L.:
A new test for the proportionality of two large-dimensional covariance matrices. J. Multiv. An. 131 (2014), 293-308.
DOI 10.1016/j.jmva.2014.06.008 |
MR 3252651
[18] Pinheiro, A., Sen, K., Pinheiro, H. P.:
Decomposibility of high-dimensional diversity measures: Quasi-$U$-statistics, martigales, and nonstandard asymptotics. J. Multiv. An. 100 (2009), 1645-1656.
DOI 10.1016/j.jmva.2009.01.007 |
MR 2535376
[19] Qiu, Y., Chen, S. X.:
Test for bandedness of high-dimensional covariance matrices and bandwidth estimation. Ann. Stat. 40 (2012) 1285-1314.
DOI 10.1214/12-aos1002 |
MR 3015026
[20] Schott, J. R.:
A test for the equality of covariance matrices when the dimension is large relative to the sample size. Computat. Statist. Data Analysis 51 (2007), 6535-6542.
DOI 10.1016/j.csda.2007.03.004 |
MR 2408613
[22] Sen, P. K.: Robust statistical inference for high-dimensional data models with applications in genomics. Aust. J. Stat. 35 (2006), 197-214.
[24] Srivastava, M. S., Yanagihara, H.:
Testing the equality of several covariance matrices with fewer observations than the dimension. J. Multiv. An. 101, 1319-1329.
DOI 10.1016/j.jmva.2009.12.010 |
MR 2609494