[1] Bacciotti, A., Rosier, L.:
Lyapunov and Lagrange stability: Inverse theorems for discontinuous systems. Math. Control Signals Systems 11 (1998), 101-128.
DOI 10.1007/bf02741887 |
MR 1628047
[2] Bainov, D. D., Simeonov, P. S.:
Systems with Impulse Effect: Stability, Theory, and Applications. Ellis Horwood, Chichester 1989.
MR 1010418
[3] Benabdallah, A., Ellouze, I., Hammami, M. A.:
Practical stability of nonlinear time-varying cascade systems. J. Dynamical Control Systems 15 (2009), 45-62.
DOI 10.1007/s10883-008-9057-5 |
MR 2475660
[4] Benabdallah, A., Dlala, M., Hammami, M. A.:
A new Lyapunov function for stability of time-varying nonlinear perturbed systems. Systems Control Lett. 56 (2007), 179-187.
DOI 10.1016/j.sysconle.2006.08.009 |
MR 2296644
[5] Hamed, B. Ben, Ellouze, I., Hammami, M. A.:
Practical uniform stability of nonlinear differential delay equations. Mediterranean J. Math. 8 (2011), 603-616.
DOI 10.1007/s00009-010-0083-7 |
MR 2860688
[6] Hamed, B. Ben, Hammami, M. .A:
Practical stabilization of a class of uncertain time-varying nonlinear delay systems. J. Control Theory Appl. 7 (2009), 175-180.
DOI 10.1007/s11768-009-8017-2 |
MR 2526947
[7] Cai, C., Teel, A., Goebel, R.:
Smooth Lyapunov functions for hybrid systems, Part I: Existence is equivalent to robustness. IEEE Trans. Automat. Control 52 (2007), 7, 1264-1277.
DOI 10.1109/tac.2007.900829 |
MR 2332751
[8] Corless, M.:
Guaranteed rates of exponential convergence for uncertain systems. J. Optim. Theory Appl. 64 (1990), 481-494.
DOI 10.1007/bf00939420 |
MR 1043736
[9] Dlala, M., Ghanmi, B., Hammami, M. A:
Exponential practical stability of nonlinear impulsive systems: converse theorem and applications. Dynamics Continuous Discrete Impulsive Systems 21 (2014), 37-64.
MR 3202437
[10] Dlala, M., Hammami, M. A.:
Uniform exponential practical stability of impulsive perturbed systems. J. Dynamical Control Systems 13 (2007), 373-386.
DOI 10.1007/s10883-007-9020-x |
MR 2337283
[12] Gordon, S. P.:
On converse to the stability theorems for difference equations. SIAM J. Control Optim. 10 (1972), 76-81.
DOI 10.1137/0310007 |
MR 0318707
[16] Jiang, Z. P., Teel, A. R., Praly, L.:
Small gain theorem for ISS systems and applications. Math. Control, Signals Systems 7 (1995), 95-120.
DOI 10.1007/bf01211469 |
MR 1359023
[18] Khalil, H. K.:
Nonlinear Systems. Third edition. Macmillan Publishing Company, 2002.
MR 1201326
[19] Lakshmikantham, V., Leela, S., Martynyuk, A. A.:
Practical Stability of Nonlinear Systems. World Scientific, Singapore 1990.
DOI 10.1142/1192 |
MR 1089428
[20] Lakshmikantham, V., Bainov, D. D., Simeonov, P. S.:
Theory of Impulsive Differential Equations. Series in Modern Applied Mathematics. Singapore and Teaneck, World Scientific, NJ 1989.
DOI 10.1142/0906 |
MR 1082551
[24] Panteley, E., Loria, A.:
On global uniform asymptotic stability of non linear time-varying non autonomous systems in cascade. Systems Control Lett. 33 (1998), 131-138.
DOI 10.1016/s0167-6911(97)00119-9 |
MR 1607815
[26] Spong, M. W., Vidyasagar, M.: Robot Dynamics and Control. John Wiley and Sons, Inc, New York 1989.
[27] Spong, M. W.: The control of underactuated mechanical systems. In: First International Conference on Mecatronics, Mexico City 1994.
[29] Yang, X.-S.:
Existence of unbounded solutions of time varying systems and failure of global asymptotic stability in discrete-time cascade systems. IMA J. Math. Control Inform. 22 (2005), 80-87.
DOI 10.1093/imamci/dni006 |
MR 2122276
[31] Yoshizawa, T.:
Stability Theory by Lyapunov's Second Method. Mathematical Society of Japan, 1966.
MR 0208086
[32] Zubov, V. I.:
Methods of A. M. Lyapunov and their Application. P. Noordhoff Ltd, Groningen 1964; translated from the Russian edition of 1957.
MR 0179428