[1] Abbassi, W., Rehman, F.:
Adaptive integral sliding mode stabilization of nonholonomic drift-free systems. Math. Problems Engrg. 2016 (2016), 1-11.
DOI 10.1155/2016/9617283 |
MR 3576111
[2] Ge, S. sam, Wang, J., Lee, T. heng, Zhou, GY.:
Adaptive robust stabilization of dynamic nonholonomic chained systems. J. Field Robotics 18 (2001), 3, 119-133.
DOI 10.1002/rob.1010.abs
[3] Kolmanovsky, I., McClamroch, N. H.:
Developments in nonholonomic control problems. IEEE Control Systems 15 (1995), 6, 20-36.
DOI 10.1109/37.476384
[6] Li, P., Zheng, Z.:
Global finite-time stabilization of planar nonlinear systems with disturbance. Asian J. Control 14 (2012), 3, 851-858.
DOI 10.1002/asjc.377 |
MR 2926015
[7] Li, Z., Xiao, H., Yang, C., Zhao, Y.:
Model predictive control of nonholonomic chained systems using general projection neural networks optimization. IEEE Trans. Systems Man Cybernetics: Systems 45 (2015), 10, 1313-1321.
DOI 10.1109/tsmc.2015.2398833
[9] Mobayen, S.:
Fast terminal sliding mode tracking of non-holonomic systems with exponential decay rate. IET Control Theory Appl. 9 (2015), 8, 1294-1301.
DOI 10.1049/iet-cta.2014.1118 |
MR 3364614
[10] Mobayen, S.:
Finite-time tracking control of chained-form nonholonomic systems with external disturbances based on recursive terminal sliding mode method. Nonlinear Dynamics 80 (2015), 1-2, 669-683.
DOI 10.1007/s11071-015-1897-4 |
MR 3324289
[11] Mobayen, S., Baleanu, D.:
Linear matrix inequalities design approach for robust stabilization of uncertain nonlinear systems with perturbation based on optimally-tuned global sliding mode control. J. Vibration Control 23, (2017), 8, 1285-1295.
DOI 10.1177/1077546315592516 |
MR 3635449
[12] Moreno, J. A., Osorio, M.: A Lyapunov approach to second-order sliding mode controllers and observers. In: Proc. 47th IEEE Conference on Decision and Control 2008, pp. 2856-2861
[14] Murray, R. M., Sastry, S. S.:
Steering nonholonomic systems in chained form. In: Proc. 30th IEEE Conference on Decision and Control 2 (1991), pp. 1121-1126.
DOI 10.1109/cdc.1991.261508 |
MR 1224308
[16] Picó, J., Picó-Marco, E., Vignoni, A., Battista, H. De:
Stability preserving maps for finite-time convergence: super-twisting sliding-mode algorithm. Automatica 49 (2013), 2, 534-539.
DOI 10.1016/j.automatica.2012.11.022 |
MR 3004721
[19] Sordalen, O. J., Egeland, O.:
Exponential stabilization of nonholonomic chained systems. IEEE Trans. Automat. Control 40 (1995), 1, 35-49.
DOI 10.1109/9.362901 |
MR 1344316
[20] Wang, Y., Miao, Z., Zhong, H., Pan, Qi.:
Simultaneous stabilization and tracking of nonholonomic mobile robots: A Lyapunov-based approach. IEEE Trans. Control Systems Technol. 23 (2015), 4, 1440-1450.
DOI 10.1109/tcst.2014.2375812
[21] Utkin, V., Guldner, J., Shi, J., Ge, S., Lewis, F.:
Sliding Mode Control in Electro-mechanical Systems. Second Edition. Boca Raton: CRC Press, 2009.
DOI 10.1201/9781420065619