Previous |  Up |  Next

Article

Keywords:
nonholonomic mechanical systems; chained form; steering control; smooth super twisting sliding mode control and lyapunov function.
Summary:
In this article, a new solution to the steering control problem of nonholonomic systems, which are transformable into chained form is investigated. A smooth super twisting sliding mode control technique is used to steer nonholonomic systems. Firstly, the nonholonomic system is transformed into a chained form system, which is further decomposed into two subsystems. Secondly, the second subsystem is steered to the origin by using smooth super twisting sliding mode control. Finally, the first subsystem is steered to zero using signum function. The proposed method is tested on three nonholonomic systems, which are transformable into chained form; a two-wheel car model, a model of front-wheel car, and a fire truck model. Numerical computer simulations show the effectiveness of the proposed method when applied to chained form nonholonomic systems.
References:
[1] Abbassi, W., Rehman, F.: Adaptive integral sliding mode stabilization of nonholonomic drift-free systems. Math. Problems Engrg. 2016 (2016), 1-11. DOI 10.1155/2016/9617283 | MR 3576111
[2] Ge, S. sam, Wang, J., Lee, T. heng, Zhou, GY.: Adaptive robust stabilization of dynamic nonholonomic chained systems. J. Field Robotics 18 (2001), 3, 119-133. DOI 10.1002/rob.1010.abs
[3] Kolmanovsky, I., McClamroch, N. H.: Developments in nonholonomic control problems. IEEE Control Systems 15 (1995), 6, 20-36. DOI 10.1109/37.476384
[4] Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int, J. Control 76 (2003), 9-10, 924-941. DOI 10.1080/0020717031000099029 | MR 1999375 | Zbl 1049.93014
[5] Zhen-Ying, L., Wang, C-Li.: Robust stabilization of nonholonomic chained form systems with uncertainties. Acta Automat. Sinica 37 (2011), 2, 129-142. DOI 10.3724/sp.j.1004.2011.00129 | MR 2848489
[6] Li, P., Zheng, Z.: Global finite-time stabilization of planar nonlinear systems with disturbance. Asian J. Control 14 (2012), 3, 851-858. DOI 10.1002/asjc.377 | MR 2926015
[7] Li, Z., Xiao, H., Yang, C., Zhao, Y.: Model predictive control of nonholonomic chained systems using general projection neural networks optimization. IEEE Trans. Systems Man Cybernetics: Systems 45 (2015), 10, 1313-1321. DOI 10.1109/tsmc.2015.2398833
[8] Luque-Vega, L., Castillo-Toledo, B., Loukianov, A. G.: Robust block second order sliding mode control for a quadrotor. J. Franklin Inst. 349 (2012), 2, 719-739. DOI 10.1016/j.jfranklin.2011.10.017 | MR 2890423
[9] Mobayen, S.: Fast terminal sliding mode tracking of non-holonomic systems with exponential decay rate. IET Control Theory Appl. 9 (2015), 8, 1294-1301. DOI 10.1049/iet-cta.2014.1118 | MR 3364614
[10] Mobayen, S.: Finite-time tracking control of chained-form nonholonomic systems with external disturbances based on recursive terminal sliding mode method. Nonlinear Dynamics 80 (2015), 1-2, 669-683. DOI 10.1007/s11071-015-1897-4 | MR 3324289
[11] Mobayen, S., Baleanu, D.: Linear matrix inequalities design approach for robust stabilization of uncertain nonlinear systems with perturbation based on optimally-tuned global sliding mode control. J. Vibration Control 23, (2017), 8, 1285-1295. DOI 10.1177/1077546315592516 | MR 3635449
[12] Moreno, J. A., Osorio, M.: A Lyapunov approach to second-order sliding mode controllers and observers. In: Proc. 47th IEEE Conference on Decision and Control 2008, pp. 2856-2861
[13] Moreno, J. A., Osorio, M.: Strict Lyapunov functions for the super-twisting algorithm. IEEE Trans. Automat. Control 57 (2012), 4, 1035-1040. DOI 10.1109/tac.2012.2186179 | MR 2952337
[14] Murray, R. M., Sastry, S. S.: Steering nonholonomic systems in chained form. In: Proc. 30th IEEE Conference on Decision and Control 2 (1991), pp. 1121-1126. DOI 10.1109/cdc.1991.261508 | MR 1224308
[15] Nagesh, I., Edwards, C.: A multivariable super-twisting sliding mode approachtor: A field-oriented control approach. Automatica 50 (2014), 3, 984-988. DOI 10.1016/j.automatica.2013.12.032 | MR 3174001
[16] Picó, J., Picó-Marco, E., Vignoni, A., Battista, H. De: Stability preserving maps for finite-time convergence: super-twisting sliding-mode algorithm. Automatica 49 (2013), 2, 534-539. DOI 10.1016/j.automatica.2012.11.022 | MR 3004721
[17] Rehman, F.: Feedback stabilization of nonholonomic control systems using model decomposition. Asian J. Control 7, (2005), 3, 256-265. DOI 10.1111/j.1934-6093.2005.tb00235.x
[18] Shtessel, Y. B., Shkolnikov, I. A., Levant, A.: Smooth second-order sliding modes: Missile guidance application. Automatica 43 (2007), 8, 1470-1476. DOI 10.1016/j.automatica.2007.01.008 | MR 2320533
[19] Sordalen, O. J., Egeland, O.: Exponential stabilization of nonholonomic chained systems. IEEE Trans. Automat. Control 40 (1995), 1, 35-49. DOI 10.1109/9.362901 | MR 1344316
[20] Wang, Y., Miao, Z., Zhong, H., Pan, Qi.: Simultaneous stabilization and tracking of nonholonomic mobile robots: A Lyapunov-based approach. IEEE Trans. Control Systems Technol. 23 (2015), 4, 1440-1450. DOI 10.1109/tcst.2014.2375812
[21] Utkin, V., Guldner, J., Shi, J., Ge, S., Lewis, F.: Sliding Mode Control in Electro-mechanical Systems. Second Edition. Boca Raton: CRC Press, 2009. DOI 10.1201/9781420065619
Partner of
EuDML logo