Previous |  Up |  Next

Article

Keywords:
impulsive differential equation; bifurcation theory; stability; impulsive control; persistence and extinction
Summary:
In this paper, we propose a new impulsive predator prey model with impulsive control at different fixed moments and analyze its interesting dynamic behaviors. Sufficient conditions for the globally asymptotical stability of the semi-trivial periodic solution and the permanence of the present model are obtained by Floquet theory of impulsive differential equation and small amplitude perturbation skills. Existences of the "infection-free" periodic solution and the "predator-free" solution are analyzed by bifurcation theory of impulsive differential equation. Finally, the analytical results presented in the work are validated by numerical simulation figures for this proposed model.
References:
[1] Baek, H. K.: Qualitative analysis of Beddington-Deangelis type impulsive predator-prey models. Nonlinear Anal. Real World Appl. 11 (2010), 1312-1322. DOI 10.1016/j.nonrwa.2009.02.021 | MR 2646548
[2] Benchohra, M., Henderson, J., Ntouyas, S. K.: Impulsive Differential Equations and Inclusions, Vol. 2. Hindawi Publishing Corporation, New York 2006. DOI 10.1155/9789775945501 | MR 2322133
[3] Chen, L. J., Chen, F. D.: Dynamic behaviors of the periodic predator-prey system with distributed time delays and impulsive effect. Nonlinear Anal. Real World Appl. 12 (2011), 2467-2473. DOI 10.1016/j.nonrwa.2011.03.002 | MR 2801033
[4] Debsis, M.: Persistence and global stability of population in a polluted environment with delay. J. Biol. Syst. 10 (2002), 225-232. DOI 10.1142/s021833900200055x
[5] Dubey, B.: Modelling the interaction of biological species in polluted environment. J. Math. Anal. Appl. (2000), 58-79. DOI 10.1006/jmaa.2000.6741
[6] Gao, S. J., Chen, L. S., Nieto, J. J., Torres, A.: Analysis of a delayed epidemic model with pulse vaccination and saturation incidence. Vaccine 24 (2006), 6037-6045. DOI 10.1016/j.vaccine.2006.05.018 | MR 2494731
[7] Guo, H. J., Chen, L. S.: The effects of impulsive harvest on a predator-prey system with distributed time delay. Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 5, 2301-2309. DOI 10.1016/j.cnsns.2008.05.010 | MR 2474476
[8] Hadeler, K. P., Freedman, H. I.: Predator-prey population with parasite infection. J. Math. Biol. 27 (1989), 609-631. DOI 10.1007/bf00276947 | MR 1024702
[9] Jin, Z., Haque, M., Liu, Q. X.: Pulse vaccination in the periodic infection rate SIR epidemic model. Int. J. Biomath. 1 (2008), 409-432. DOI 10.1142/s1793524508000370 | MR 2483092
[10] Hui, J., Chen, L.: Dynamic complexities in a periodically pulsed ratio-dependent predator-prey ecosystem modeled on a chemostat. Chaos Solitons Fractals 29 (2006), 407-416. DOI 10.1016/j.chaos.2005.08.036 | MR 2211477
[11] Jiang, X. W., Song, Q., Hao, M. Y.: Dynamics behaviors of a delayed stage-structured predator-prey model with impulsive effect. Appl. Math. Comput. 215 (2010), 4221-4229. DOI 10.1016/j.amc.2009.12.044 | MR 2596099
[12] Jiao, J. J., Cai, S. H., Li, L. M.: Dynamics of a periodic switched predator-prey system with impulsive harvesting and hibernation of prey population. J. Franklin Inst. 353 (2016), 3818-3834. DOI 10.1016/j.jfranklin.2016.06.035 | MR 3539405
[13] Jiao, J. J., Yang, X. S., Chen, L. S., Cai, S. H.: Effect of delayed response in growth on the dynamics of a chemostat model with impulsive input. Chaos Solitons Fractals 42 (2009), 2280-2287. DOI 10.1016/j.chaos.2009.03.132 | MR 2559887
[14] Lakmeche, A.: Birfurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment. Dynam. Contin. Discrete Impuls. 7 (2000), 265-287. MR 1744966
[15] Lakshmikantham, V., Bainov, D., Simeonov, P.: Theory of Impulsive Differential Equations. World Scientific Publisher, Singapore 1989, pp. 27-66. MR 1082551 | Zbl 0719.34002
[16] Li, Y.F., Cui, J. A.: The effect of constant and pulse vaccination on SIS epidemic models incorporating media coverage. Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 2353-2365. DOI 10.1016/j.cnsns.2008.06.024 | MR 2474479
[17] Li, Y. F., Cui, J. A., Song, X. Y.: Dynamics of a predator-prey system with pulses. Appl. Math. Comput. 204 (2008), 269-280. DOI 10.1016/j.amc.2008.06.037 | MR 2458365
[18] Liu, Z. J., Chen, L. S.: Periodic solution of a two-species competitive system with toxicant and birth pulse. Chaos Solitons Fract. 32 (2007), 1703-1712. DOI 10.1016/j.chaos.2005.12.004 | MR 2299084
[19] Liu, B., Teng, Z. D., Chen, L. S.: The effect of impulsive spraying pesticide on stage-structured population models with birth pulse. J. Biol. Syst. 13 (2005), 31-44. DOI 10.1142/s0218339005001409 | MR 2295383
[20] Liu, B., Zhang, L.: Dynamics of a two-species Lotka-Volterra competition system in a polluted environment with pulse toxicant input. Appl. Math. Comput. 214 (2009), 155-162. DOI 10.1016/j.amc.2009.03.065 | MR 2541054
[21] Meng, X. Z., Chen, L. S., Chen, H. D.: Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination. Appl. Math. Comput. 186 (2008), 516-529. DOI 10.1016/j.amc.2006.07.124 | MR 2314511
[22] Meng, X. Z., Li, Z. Q., Nieto, J. J.: Dynamic analysis of michaelis-menten chemostat-type competition models with time delay and pulse in a polluted environment. J. Math. Chem. 47 (2009), 123-144. DOI 10.1007/s10910-009-9536-2 | MR 2576641
[23] Nieto, J. J., O'Regan, D.: Variational approach to impulsive differential equations. Nonlinear Anal. Real World Appl. 10 (2009), 680-690. DOI 10.1016/j.nonrwa.2007.10.022 | MR 2474254
[24] Panetta, J. C.: A mathematical model of periodically pulsed chemotheapy: tumor recurrence and metastasis in a competition environment. Bull. Math. Biol. 58 (1996), 425-447. DOI 10.1016/0092-8240(95)00346-0
[25] Rhodes, C. J., Anderson, R. M.: Forest-fire as a model for the dynamics of disease epidemics. J. Franklin Inst. 335 (1998), 199-211. DOI 10.1016/s0016-0032(96)00096-8 | MR 1603416
[26] Sun, K. B., Zhang, T. H., Tian, Y.: Dynamics analysis and control optimization of a pest management predator-prey model with an integrated control strategy. Appl. Math. Comput. 292 (2017), 253-371. DOI 10.1016/j.amc.2016.07.046 | MR 3542555
[27] Sun, K. B., Zhang, T. H., Tian, Y.: Theoretical study and control optimization of an integrated pest management predator-prey model with power growth rate. Math. Biosci. 279 (2016), 13-26. DOI 10.1016/j.mbs.2016.06.006 | MR 3532075
[28] Wang, L. M., Chen, L. S., Nieto, J. J.: The dynamics of an epidemic model for pest control with impulsive effect. J. Nonlinear Anal. Real World Appl. 11 (2010), 1374-1386. DOI 10.1016/j.nonrwa.2009.02.027 | MR 2646553
[29] Wang, L., Liu, Z., Hui, J., Chen, L.: Impulsive diffusion in single species model. Chaos Solitons Fractals 33 (2007), 1213-1219. DOI 10.1016/j.chaos.2006.01.102 | MR 2318908
[30] Wang, L. J., Xie, Y. X., Fu, J. Q.: The dynamics of natural mortality for pest control model with impulsive effect. J. Franklin Inst. 350 (2013), 1443-1461. DOI 10.1016/j.jfranklin.2013.03.008 | MR 3067566
[31] Wu, R. H., Zou, X. L., Wang, K.: Asymptotic behavior of a stochastic non-autonomous predator-prey model with impulsive perturbations. Commun. Nonlinear Sci. Numer. Simul. 20 (2015), 965-974. DOI 10.1016/j.cnsns.2014.06.023 | MR 3255647
[32] Xiao, Y., Bosch, F. V. D.: The dynamics of an eco-epidemic model with bio-logical control. Ecol. Model. 168 (2003), 203-214. DOI 10.1016/s0304-3800(03)00197-2
[33] Xiao, Y., Chen, L.: Modelling and analysis of a predator-prey model with disease in the prey. Math. Biosci. 171 (2001), 59-82. DOI 10.1016/s0025-5564(01)00049-9 | MR 1839209
[34] Xiao, Y. N., Chen, L. S.: Effects of toxicant on a stage-structured population growth model. Appl. Math. Comput. 123 (2001), 63-73. DOI 10.1016/s0096-3003(00)00057-6 | MR 1846712
[35] Xie, Y. X., Wang, L. J., Deng, Q. C., Wu, Z. J.: The dynamics of an impulsive predator-prey model with communicable disease in the prey species only. Appl. Math. Comput. 292 (2017), 320-335. DOI 10.1016/j.amc.2016.07.042 | MR 3542560
[36] Xie, Y. X., Yuan, Z. H., Wang, L. J.: Dynamic analysis of pest control model with population dispersal in two patches and impulsive effect. J. Comput. Sci. 5 (2014), 685-695. DOI 10.1016/j.jocs.2014.06.011 | MR 3246878
[37] Zhang, H., Chen, L. S., Nieto, J. J.: A delayed epidemic model with stage-structureand pulses for pest management strategy. Nonlinear Anal. Real World Probl. 9 (2008), 1714-1726. DOI 10.1016/j.nonrwa.2007.05.004 | MR 2422575
[38] Zhang, S. W., Tan, D. J.: Dynamics of a stochastic predator-prey system in a polluted environment with pulse toxicant input and impulsive perturbations. Appl. Math. Modelling 39 (2015), 6319-6331. DOI 10.1016/j.apm.2014.12.020 | MR 3418684
[39] Zuo, W. J., Jiang, D. Q.: Periodic solutions for a stochastic non-autonomous Holling-Tanner predator-prey system with impulses. Nonlinear Analysis: Hybrid Systems 22 (2016), 191-201. DOI 10.1016/j.nahs.2016.03.004 | MR 3530838
Partner of
EuDML logo