[2] Benchohra, M., Henderson, J., Ntouyas, S. K.:
Impulsive Differential Equations and Inclusions, Vol. 2. Hindawi Publishing Corporation, New York 2006.
DOI 10.1155/9789775945501 |
MR 2322133
[3] Chen, L. J., Chen, F. D.:
Dynamic behaviors of the periodic predator-prey system with distributed time delays and impulsive effect. Nonlinear Anal. Real World Appl. 12 (2011), 2467-2473.
DOI 10.1016/j.nonrwa.2011.03.002 |
MR 2801033
[4] Debsis, M.:
Persistence and global stability of population in a polluted environment with delay. J. Biol. Syst. 10 (2002), 225-232.
DOI 10.1142/s021833900200055x
[5] Dubey, B.:
Modelling the interaction of biological species in polluted environment. J. Math. Anal. Appl. (2000), 58-79.
DOI 10.1006/jmaa.2000.6741
[6] Gao, S. J., Chen, L. S., Nieto, J. J., Torres, A.:
Analysis of a delayed epidemic model with pulse vaccination and saturation incidence. Vaccine 24 (2006), 6037-6045.
DOI 10.1016/j.vaccine.2006.05.018 |
MR 2494731
[7] Guo, H. J., Chen, L. S.:
The effects of impulsive harvest on a predator-prey system with distributed time delay. Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 5, 2301-2309.
DOI 10.1016/j.cnsns.2008.05.010 |
MR 2474476
[10] Hui, J., Chen, L.:
Dynamic complexities in a periodically pulsed ratio-dependent predator-prey ecosystem modeled on a chemostat. Chaos Solitons Fractals 29 (2006), 407-416.
DOI 10.1016/j.chaos.2005.08.036 |
MR 2211477
[11] Jiang, X. W., Song, Q., Hao, M. Y.:
Dynamics behaviors of a delayed stage-structured predator-prey model with impulsive effect. Appl. Math. Comput. 215 (2010), 4221-4229.
DOI 10.1016/j.amc.2009.12.044 |
MR 2596099
[12] Jiao, J. J., Cai, S. H., Li, L. M.:
Dynamics of a periodic switched predator-prey system with impulsive harvesting and hibernation of prey population. J. Franklin Inst. 353 (2016), 3818-3834.
DOI 10.1016/j.jfranklin.2016.06.035 |
MR 3539405
[13] Jiao, J. J., Yang, X. S., Chen, L. S., Cai, S. H.:
Effect of delayed response in growth on the dynamics of a chemostat model with impulsive input. Chaos Solitons Fractals 42 (2009), 2280-2287.
DOI 10.1016/j.chaos.2009.03.132 |
MR 2559887
[14] Lakmeche, A.:
Birfurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment. Dynam. Contin. Discrete Impuls. 7 (2000), 265-287.
MR 1744966
[15] Lakshmikantham, V., Bainov, D., Simeonov, P.:
Theory of Impulsive Differential Equations. World Scientific Publisher, Singapore 1989, pp. 27-66.
MR 1082551 |
Zbl 0719.34002
[16] Li, Y.F., Cui, J. A.:
The effect of constant and pulse vaccination on SIS epidemic models incorporating media coverage. Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 2353-2365.
DOI 10.1016/j.cnsns.2008.06.024 |
MR 2474479
[19] Liu, B., Teng, Z. D., Chen, L. S.:
The effect of impulsive spraying pesticide on stage-structured population models with birth pulse. J. Biol. Syst. 13 (2005), 31-44.
DOI 10.1142/s0218339005001409 |
MR 2295383
[20] Liu, B., Zhang, L.:
Dynamics of a two-species Lotka-Volterra competition system in a polluted environment with pulse toxicant input. Appl. Math. Comput. 214 (2009), 155-162.
DOI 10.1016/j.amc.2009.03.065 |
MR 2541054
[21] Meng, X. Z., Chen, L. S., Chen, H. D.:
Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination. Appl. Math. Comput. 186 (2008), 516-529.
DOI 10.1016/j.amc.2006.07.124 |
MR 2314511
[22] Meng, X. Z., Li, Z. Q., Nieto, J. J.:
Dynamic analysis of michaelis-menten chemostat-type competition models with time delay and pulse in a polluted environment. J. Math. Chem. 47 (2009), 123-144.
DOI 10.1007/s10910-009-9536-2 |
MR 2576641
[24] Panetta, J. C.:
A mathematical model of periodically pulsed chemotheapy: tumor recurrence and metastasis in a competition environment. Bull. Math. Biol. 58 (1996), 425-447.
DOI 10.1016/0092-8240(95)00346-0
[26] Sun, K. B., Zhang, T. H., Tian, Y.:
Dynamics analysis and control optimization of a pest management predator-prey model with an integrated control strategy. Appl. Math. Comput. 292 (2017), 253-371.
DOI 10.1016/j.amc.2016.07.046 |
MR 3542555
[27] Sun, K. B., Zhang, T. H., Tian, Y.:
Theoretical study and control optimization of an integrated pest management predator-prey model with power growth rate. Math. Biosci. 279 (2016), 13-26.
DOI 10.1016/j.mbs.2016.06.006 |
MR 3532075
[28] Wang, L. M., Chen, L. S., Nieto, J. J.:
The dynamics of an epidemic model for pest control with impulsive effect. J. Nonlinear Anal. Real World Appl. 11 (2010), 1374-1386.
DOI 10.1016/j.nonrwa.2009.02.027 |
MR 2646553
[31] Wu, R. H., Zou, X. L., Wang, K.:
Asymptotic behavior of a stochastic non-autonomous predator-prey model with impulsive perturbations. Commun. Nonlinear Sci. Numer. Simul. 20 (2015), 965-974.
DOI 10.1016/j.cnsns.2014.06.023 |
MR 3255647
[35] Xie, Y. X., Wang, L. J., Deng, Q. C., Wu, Z. J.:
The dynamics of an impulsive predator-prey model with communicable disease in the prey species only. Appl. Math. Comput. 292 (2017), 320-335.
DOI 10.1016/j.amc.2016.07.042 |
MR 3542560
[36] Xie, Y. X., Yuan, Z. H., Wang, L. J.:
Dynamic analysis of pest control model with population dispersal in two patches and impulsive effect. J. Comput. Sci. 5 (2014), 685-695.
DOI 10.1016/j.jocs.2014.06.011 |
MR 3246878
[37] Zhang, H., Chen, L. S., Nieto, J. J.:
A delayed epidemic model with stage-structureand pulses for pest management strategy. Nonlinear Anal. Real World Probl. 9 (2008), 1714-1726.
DOI 10.1016/j.nonrwa.2007.05.004 |
MR 2422575
[38] Zhang, S. W., Tan, D. J.:
Dynamics of a stochastic predator-prey system in a polluted environment with pulse toxicant input and impulsive perturbations. Appl. Math. Modelling 39 (2015), 6319-6331.
DOI 10.1016/j.apm.2014.12.020 |
MR 3418684
[39] Zuo, W. J., Jiang, D. Q.:
Periodic solutions for a stochastic non-autonomous Holling-Tanner predator-prey system with impulses. Nonlinear Analysis: Hybrid Systems 22 (2016), 191-201.
DOI 10.1016/j.nahs.2016.03.004 |
MR 3530838