[1] Ahrens, J., Tan, X., Khalil, H.:
Multirate sampled-data output feedback control with application to smart material actuated systems. IEEE Trans. Automat. Control 54 (2009), 2518-2529.
DOI 10.1109/tac.2009.2031204 |
MR 2571917
[2] Boutat, D.:
Extended nonlinear observer normal forms for a class of nonlinear dynamical systems. Int. J. Robust Nonlinear Control 25 (2015), 461-474.
DOI 10.1002/rnc.3102 |
MR 3304211
[3] Boyd, S., Ghaoui, L., al., E. Feron et:
Linear Matrix Inequalities in System and Control Theory. Society for Industrial and Applied Mathematics, ch. 1.2, Philadelphia 1994.
DOI 10.1137/1.9781611970777 |
MR 1284712
[4] Chen, M., Chen, C.:
Robust nonlinear observer for Lipschitz nonlinear systems subject to disturbances. IEEE Trans. Automat. Control 52 (2007), 2365-2369.
DOI 10.1109/tac.2007.910724 |
MR 2374276
[5] Dezuo, T., Trofino, A.:
LMI conditions for designing rational nonlinear observers. In: 2014 American Control Conference. 47 (2014), 5343-5348.
DOI 10.1109/acc.2014.6858805
[6] Dinh, T., Andrieu, V., Nadri, M., al., et:
Continuous-discrete time observer design for Lipschitz systems with sampled measurements. IEEE Trans. Automat. Control 60 (2015), 787-792.
DOI 10.1109/tac.2014.2329211 |
MR 3318404
[7] Dong, Y., Liu, J., Mei, S.:
Observer design for a class of nonlinear discrete-time systems with time-delay. Kybernetika 49 (2013), 341-358.
MR 3085400 |
Zbl 1264.93144
[10] Gupta, M., Tomar, N., Bhaumik, S.:
Observer Design for Descriptor Systems with Lipschitz Nonlinearities: An LMI Approach. Nonlinear Dynamics Systems Theory 14 (2014), 291-301.
MR 3560210
[11] Kang, W., Krener, A., al., M. Xiao et:
A survey of observers for nonlinear dynamical systems. In: Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, Vol. II, Springer Berlin Heidelberg 2013, pp. 1-25.
DOI 10.1007/978-3-642-35088-7\_1
[12] Khalil, H.: Nonlinear System. Upper Saddle River, Prentice Hall, ch. 14.5, NJ 2000.
[13] Kwakernaak, H., Sivan, R.:
Linear Optimal Control Systems. Wiley, ch. 3, Theorem 3.14, New York 1972.
MR 0406607
[14] Lewis, F.: Applied Optimal Control and Estimation. Englewood Cliffs, Prentice-Hall, ch. 3, Theorem 2, NJ 1992.
[16] Nešić, D., Teel, A.:
A framework for stabilization of nonlinear sampled-data systems based on their approximate discrete-time models. IEEE Trans. Automat. Control 49 (2004), 1103-1122.
DOI 10.1109/tac.2004.831175 |
MR 2071938
[17] Oucief, N., Tadjine, M., Labiod, S.:
Adaptive observer-based fault estimation for a class of Lipschitz nonlinear systems. Archives Control Sci. 26 (2016), 245-259.
DOI 10.1515/acsc-2016-0014 |
MR 3530358
[18] Pan, J., Meng, M., Feng, J.:
A note on observers design for one-sided Lipschitz nonlinear systems. In: Control Conference IEEE (2015), pp. 1003-1007.
DOI 10.1109/chicc.2015.7259771
[19] Perez, C., Mera, M.:
Robust observer-based control of switched nonlinear systems with quantized and sample output. Kybernetika 54 (2015), 59-80.
DOI 10.14736/kyb-2015-1-0059 |
MR 3333833
[21] Saberi, A., Sannuti, P., Chen, B.: $H_2$ Optimal Control. Englewood Cliffs, Prentice-Hall, ch. 4, Theorem 4.1.2, NJ 1995.
[22] Shen, Y., Zhang, D., Xia, X.:
Continuous output feedback stabilization for nonlinear systems based on sampled and delayed output measurements. Internat. J. Robust and Nonlinear Control 26 (2016), 3075-3087.
DOI 10.1002/rnc.3491 |
MR 3537171 |
Zbl 1346.93320
[23] Shen, Y., Zhang, D., Xia, X.:
Continuous observer design for a class of multi-output nonlinear systems with multi-rate sampled and delayed output measurements. Automatica 75 (2017), 127-132.
DOI 10.1016/j.automatica.2016.09.028 |
MR 3582161
[24] Stein, G., Athans, M.:
The LQG/LTR procedure for multivariable feedback control design. IEEE Trans. Automat. Control 32 (1987), 105-114.
DOI 10.1109/tac.1987.1104550
[25] Tahir, A., Magri, A., Ahmed-Ali, T., al., et:
Sampled-data nonlinear observer design for sensorless synchronous PMSM. IFAC-Papers OnLine 48 (2015), 327-332.
DOI 10.1016/j.ifacol.2015.09.206
[27] Wang, Y., Liu, X., Xiao, J., Shen, Y.:
Output formation-containment of interacted heterogeneous linear systems by distributed hybrid active control. Automatica 93 (2018), 26-32.
DOI 10.1016/j.automatica.2018.03.020 |
MR 3810889
[28] Yu, L.: Robust Control: Linear Matrix Inequality Approach. Tsinghua University Press 2002.
[30] Zhang, D., Shen, Y. J.:
Continuous sampled-data observer design for nonlinear systems with time delay larger or samller than the sampling period. IEEE Trans. Automat. Control 62 (2017), 5822-5829.
DOI 10.1109/tac.2016.2638043 |
MR 3730959
[31] Zhang, D., Shen, Y., Xia, X.:
Globally uniformly ultimately bounded observer design for a class of nonlinear systems with sampled and delayed measurements. Kybernetika 52 (2016), 441-460.
DOI 10.14736/kyb-2016-3-0441 |
MR 3532516
[32] Zhang, W., Su, H., al., S. Su et: Nonlinear $H_\infty$ observer design for one-sided Lipschitz systems. Neurocomputing (2014), 505-511.
[33] Zhang, W., Su, H., al., F. Zhu et:
A note on observers for discrete-time Lipschitz nonlinear systems. IEEE Trans. Circuits Systems II Express Briefs 29 (2012), 123-127.
DOI 10.1109/tcsii.2011.2174671
[34] Zhou, Y., Soh, Y., Shen, J.:
High-gain observer with higher order sliding mode for state and unknown disturbance estimations. Int. J. Robust abd Nonlinear Control 24 (2016), 2136-2151.
DOI 10.1002/rnc.2982 |
MR 3259380