[1] Balachandran, K., Somasundaram, D.:
Controllability of a class of nonlinear systems with distributed delays in control. Kybernetika 19 (1983), 475-482.
MR 0734834
[2] Balachandran, K., Somasundaram, D.:
Controllability of nonlinear systems consisting of a bilinear mode with time-varying delays in control. Automatica 20 (1984), 257-258.
DOI |
MR 0739580
[3] Balachandran, K., Somasundaram, D.:
Relative controllability of nonlinear systems with time-varying delays in control. Kybernetika 21 (1985), 65-72.
MR 0788670
[4] Benzaid, Z., Sznaier, M.:
Constrained controllability of linear impulsive differential systems. IEEE Trans. Automat. Control 39 (1994), 1064-1066.
DOI |
MR 1274362
[5] Bian, W.\.M.:
Constrained controllability of some nonlinear systems. Appl. Anal. 72 (1999), 57-73.
DOI |
MR 1775435
[6] Chyung, D. H.:
Controllability of linear time-varying systems with delays. IEEE Trans. Automat. Control 16 (1971), 493-495.
DOI |
MR 0285288
[7] Dacka, C.:
Relative controllability of perturbed nonlinear systems with delay in control. IEEE Trans. Automat. Control 27 (1982), 268-270.
DOI |
MR 0673102
[8] Dubey, B., George, R. K.:
Controllability of semilinear matrix Lyapunov systems. EJDE 42 (2013), 1-12.
MR 3035241
[9] Dubey, B., George, R. K.:
Controllability of impulsive matrix Lyapunov systems. Appl. Math. Comput. 254 (2015), 327-339.
DOI |
MR 3314458
[10] Erneux, T.:
Applied Delay Differential Equations. Springer-Verlag, New York, USA 2009.
MR 2498700
[11] George, R. K., Nandakumaran, A. K., Arapostathis, A.:
A note on controllability of impulsive systems. J. Math. Anal. Appl. 241 (2000), 276-283.
DOI |
MR 1739206
[12] Graham, A.:
Kronecker Products and Matrix Calculus: With Applications. Ellis Horwood Ltd. England 1981.
MR 0640865
[13] Guan, Z. H., Qian, T. H., Yu, X.:
On controllability and observability for a class of impulsive systems. Syst. Control Lett. 47 (2002), 247-257.
DOI |
MR 2008278
[14] Guan, Z. H., Qian, T. H., Yu, X.:
Controllability and observability of linear time-varying impulsive systems. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 49 (2002), 1198-1208.
DOI |
MR 1929297
[15] Han, J., Liu, Y., Zhao, S., Yang, R.:
A note on the controllability and observability for piecewise linear time-varying impulsive systems. Asian J. Control 15 (2012), 1867-1870.
DOI |
MR 3130263
[16] Klamka, J.:
Relative controllability and minimum energy control of linear systems with distributed delays in control. IEEE Trans. Automat. Control 21 (1976), 594-595.
DOI |
MR 0411713
[17] Klamka, J.:
Controllability of linear systems with time-variable delays in control. Int. J. Control 24 (1976), 869-878.
DOI |
MR 0424300
[18] Klamka, J.:
Absolute controllability of linear systems with time-variable delays in control. Int. J. Control 26 (1977), 57-63.
DOI |
MR 0456655
[19] Klamka, J.:
On the controllability of linear systems with delays in the control. Int. J. Control 25 (1977), 875-883.
DOI |
MR 0527645
[20] Klamka, J.:
Controllability of non-linear systems with distributed delays in control. Int. J. Control 31 (1980), 811-819.
DOI |
MR 0573486
[21] Klamka, J.:
Constrained controllability of nonlinear systems. J. Math. Anal. Appl. 201 (1996), 365-374.
DOI |
MR 1396905
[22] Klamka, J.:
Constrained controllability of semilinear systems with multiple delays in control. Bull. Pol. Ac. Tech. 52 (2004), 25-30.
DOI |
MR 0527645
[23] Klamka, J.:
Constrained controllability of semilinear systems with delayed controls. Bull. Pol. Ac. Tech. 56 (2008), 333-337.
MR 2487127
[24] Klamka, J.:
Constrained controllability of semilinear systems with delays. Nonlin. Dyn. 56 (2009), 169-177.
DOI |
MR 2487127
[25] Lakshmikantham, V., Bainov, D. D., Simeonov, P. S.:
Theory of impulsive differential equations. World Scientific, Singapore 1989.
MR 1082551
[26] Leela, S., McRae, F. A., Sivasundaram, S.:
Controllability of impulsive differential equations. J. Math. Anal. Appl. 177 (1993), 24-30.
DOI |
MR 1224802
[27] Murty, M. S. N., Rao, B. V. Appa, Kumar, G. Suresh:
Controllability, observability and realizability of matrix Lyapunov systems. B. Korean Math. Soc. 43 (2006), 149-159.
DOI |
MR 2204867
[28] Olbrot, A. W.:
On controllability of linear systems with time-delays in control. IEEE Trans. Automat. Control 17 (1972), 664-666.
DOI |
MR 0441425
[29] Sakthivel, R., Mahmudov, N. I., Kim, J. H.:
Approximate controllability of nonlinear impulsive differential systems. Rep. Math. Phys. 60 (2007), 85-96.
DOI |
MR 2355467
[30] Sebakhy, O., Bayoumi, M. M.:
A simplified criterion for the controllability of linear systems with delay in control. IEEE Trans. Automat. Control 16 (1971), 364-365.
DOI |
MR 0411712
[31] Somasundaram, D., Balachandran, K.:
Controllability of nonlinear systems consisting of a bilinear mode with distributed delays in control. IEEE Trans. Automat. Control 29 (1984), 573-575.
DOI |
MR 0745197
[32] Xie, G., Wang, L.:
Controllability and observability of a class of linear impulsive systems. J. Math. Anal. Appl. 304 (2005), 336-355.
DOI |
MR 2124666
[33] Zhao, S., Sun, J.:
Controllability and observability for a class of time-varying impulsive systems. Nonlin. Anal. RWA. 10 (2009), 1370-1380.
DOI |
MR 2502952
[34] Zhu, Z. Q., Lin, Q. W.:
Exact controllability of semilinear systems with impulses. Bull. Math. Anal. Appl. 4 (2012), 157-167.
MR 2955884