[2] Brown, J. W., Churchill, R. V.:
Complex Variables and Applications. McGraw-Hill Companies, Inc. and China Machine Press, Beijing 2004.
MR 0112948
[4] Hu, G. D.:
Stability criteria of linear neutral systems with distributed delays. Kybernetika 47 (2011), 273-284.
MR 2828577
[5] Hu, G. D., Cahlon, B.:
Estimations on numerically stable step-size for neutral delay differential systems with multiple delays. J. Comput. Appl. Math. 102 (1999), 221-234.
DOI 10.1016/s0377-0427(98)00215-5 |
MR 1674027
[7] Huang, C., Vandewalle, S.:
An analysis of delay-dependent stability for ordinary and partial differential equations with fixed and distributed delays. SIAM J. Scientific Computing 25 (2004), 1608-1632.
DOI 10.1137/s1064827502409717 |
MR 2087328
[8] Johnson, L. W., Riess, R. Dean, Arnold, J. T.: Introduction to Linear Algebra. Prentice-Hall, Englewood Cliffs 2000.
[9] Jury, E. I.: Theory and Application of $z$-Transform Method. John Wiley and Sons, New York 1964.
[11] Kolmanovskii, V. B., Myshkis, A.:
Introduction to Theory and Applications of Functional Differential Equations. Kluwer Academic Publishers, Dordrecht 1999.
DOI 10.1007/978-94-017-1965-0 |
MR 1680144
[12] Lambert, J. D.:
Numerical Methods for Ordinary Differential Systems. John Wiley and Sons, New York 1999.
MR 1127425
[13] Lancaster, P., Tismenetsky, M.:
The Theory of Matrices with Applications. Academic Press, Orlando 1985.
MR 0792300
[14] Michiels, W., Niculescu, S.:
Stability, Control and Computation for Time Delay Systems: An Eigenvalue Based Approach. SIAM, Philadelphia 2014.
DOI 10.1137/1.9781611973631 |
MR 3288751
[15] Tian, H., Kuang, J.:
The stability of the $\theta$-methods in numerical solution of delay differential equations with several delay terms. J. Comput. Appl. Math. 58 (1995), 171-181.
DOI 10.1016/0377-0427(93)e0269-r |
MR 1343634
[16] Vyhlidal, T., Zitek, P.:
Modification of Mikhaylov criterion for neutral time-delay systems. IEEE Trans. Automat. Control 54 (2009), 2430-2435.
DOI 10.1109/tac.2009.2029301 |
MR 2562848