[3] Aram, Z., Jafari, S., al., J. Ma et:
Using chaotic artificial neural networks to model memory in the brain. Commun. Nonlinear Sci. Numer. Simulat. 44 (2017), 449-459.
DOI 10.1016/j.cnsns.2016.08.025 |
MR 3554829
[4] Bao, B. C., Xu, J. P., Liu, Z.:
Initial state dependent dynamical behaviors in a Memristor based chaotic circuit. Chinese Phys. Lett. 27 (2010), 070504.
DOI 10.1088/0256-307x/27/7/070504
[6] Barrow-Green, J.:
Poincaré and the three body problem. Amer. Math. Soc. 2 (1997).
MR 1415387
[8] Dantsev, D.:
A Novel type of chaotic attractor for quadratic systems without equilibriums. Int. J. Bifurcat. Chaos 12 (2002), 659-661.
DOI 10.1142/s0218127402004620
[11] Ermakov, I. V., Kingni, S. T., al., V. Z. Tronciu et:
Chaotic semiconductor ring lasers subject to optical feedback: Applications to chaos-based communications. Optics Commun. 286 (2013), 265-272.
DOI 10.1016/j.optcom.2012.08.063
[13] Garfinkel, A., Spano, M. L., al., W. L. Ditto et:
Controlling cardiac chaos. Science 257 (1992), 1230-1235.
DOI 10.1126/science.1519060
[17] Hu, X., Liu, C., al., L. Liu et:
Multi-scroll hidden attractors in improved Sprott A system. Nonlinear Dyn. 86 (2016), 1725-1734.
DOI 10.1007/s11071-016-2989-5
[21] Jafari, S., Sprott, J. C., al., V. T. Pham et:
Simple chaotic 3D flows with surfaces of equilibria. Nonlinear Dyn. 86 (2016), 1349-1358.
DOI 10.1007/s11071-016-2968-x
[22] Jia, B., Gu, H. G., al., L. Li et:
Dynamics of period-doubling bifurcation to chaos in the spontaneous neural firing patterns. Cogn. Neurodyn. 6 (2012), 89-106.
DOI 10.1007/s11571-011-9184-7
[23] Kennedy, M. P.:
Chaos in the Colpitts oscillator. IEEE Trans. Circ. Syst. I 41 (1994), 711-774.
DOI 10.1109/81.331536
[24] Kobe, D. H.:
Helmholtz's theorem revisited. Amer. J. Physics 54 (1986), 552-554.
DOI 10.1119/1.14562
[25] Kwok, H. S., Tang, W. K. S.:
A fast image encryption system based on chaotic maps with finite precision representation. Chaos Solitons Fractals 32 (2007), 1518-1529.
DOI 10.1016/j.chaos.2005.11.090 |
MR 2286314
[29] Leonov, G. A., Kuznetsov, N. V., Mokaev, T. N.:
Homoclinic orbit and hidden attractor in the Lorenz-like system describing the fluid convection motion in the rotating cavity. Commun. Nonlinear Sci. Numer. Simulat. 28 (2015), 166-176.
DOI 10.1016/j.cnsns.2015.04.007 |
MR 3348101
[30] Li, C., Li, S., al., M. Asim et:
On the security defects of an image encryption scheme. Image Vision Computing 27 (2009), 1371-1381.
DOI 10.1016/j.imavis.2008.12.008
[31] Li, Y. Y., G., H., Gu:
The distinct stochastic and deterministic dynamics between period-adding and period-doubling bifurcations of neural bursting patterns. Nonlinear Dyn. 87 (2017), 2541-2562.
DOI 10.1007/s11071-016-3210-6
[36] Lv, M., Ma, J.:
Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205 (2016), 375-381.
DOI 10.1016/j.neucom.2016.05.004
[37] Lv, M., Wang, C., al., G. Ren et:
Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85 (2016), 1479-1490.
DOI 10.1007/s11071-016-2773-6
[38] Ma, J., Wu, X. Y., al., R. T. Chu et:
Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice. Nonlinear Dyn. 76 (2014), 1951-1962.
DOI 10.1007/s11071-014-1260-1
[39] Ma, J., Li, A. B., al., Z. S. Pu et:
A time-varying hyperchaotic system and its realization in circuit. Nonlinear Dyn. 62 (2010), 535-541.
DOI 10.1007/s11071-010-9739-x
[40] Ma, J., Mi, L., al., P. Zhou et:
Phase synchronization between two neurons induced by coupling of electromagnetic field. Appl. Math. Comput. 307 (2017), 321-328.
DOI 10.1016/j.amc.2017.03.002 |
MR 3632742
[41] Ma, J., Song, X. L., al., J. Tang et:
Wave emitting and propagation induced by autapse in a forward feedback neuronal network. Neurocomputing 167 (2015), 378-389.
DOI 10.1016/j.neucom.2015.04.056
[42] Ma, J., Wu, F., al., W. Jin et:
Calculation of Hamilton energy and control of dynamical systems with different types of attractors. Chaos 27 (2017), 481-495.
DOI 10.1063/1.4983469 |
MR 3650956
[45] Ma, J., Zhang, A. H., al., Y. F. Xia et:
Optimize design of adaptive synchronization controllers and parameter observers in different hyperchaotic systems. Appl. Math. Comput. 215 (2010), 3318-3326.
DOI 10.1016/j.amc.2009.10.020 |
MR 2576820
[53] Ren, G. D., Xu, Y., Wang, C. N.:
Synchronization behavior of coupled neuron circuits composed of memristors. Nonlinear Dyn. 88 (2017), 893-901.
DOI 10.1007/s11071-015-2075-4
[55] Shaw, R.:
The dripping faucet as a model chaotic system. Aerial Press, Santa Cruz 1984.
MR 1101814
[57] Strukov, D. B., Snider, G. S., al., D. R. Stewart et:
The missing memristor found. Nature 453( 2008), 80-83.
DOI 10.1038/nature06932
[60] Wang, C., Chu, R., Ma, J.:
Controlling a chaotic resonator by means of dynamic track control. Complexity 21 (2015), 370-378.
DOI 10.1002/cplx.21572 |
MR 3407876
[61] Wang, S., Kuang, J., al., J. Li et:
Chaos-based secure communications in a large community. Phys. Rev. E 66 (2002), 065202.
DOI 10.1103/physreve.66.065202
[62] Wang, C. N., Ma, J., al., Y. Liu et:
Chaos control, spiral wave formation, and the emergence of spatiotemporal chaos in networked Chua circuits. Nonlinear Dyn. 67 (2012), 139-146.
DOI 10.1007/s11071-011-9965-x
[63] Wang, C. N., Wang, Y., Ma, J.: Calculation of Hamilton energy function of dynamical system by using Helmholtz theorem. Acta Physica Sinica 65 (2016), 240501.
[65] Wu, C. W., Chua, L. O.:
A simple way to synchronize chaotic systems with applications to secure communication systems. Int. J. Bifurcat. Chaos 3 (1993), 1619-1627.
DOI 10.1142/s0218127493001288
[67] Yalcin, M. E:
Multi-scroll and hypercube attractors from a general jerk circuit using Josephson junctions. Chaos Solutons Fractals 34 (2007), 1659-1666.
DOI 10.1016/j.chaos.2006.04.058
[68] Yang, T.: A survey of chaotic secure communication systems. Int. J. Comput. Cogn. 2 (2004), 81-130.
[69] Zarei, A.:
Complex dynamics in a 5-D hyper-chaotic attractor with four-wing, one equilibrium and multiple chaotic attractors. Nonlinear Dyn. 81 (2015), 585-605.
DOI 10.1007/s11071-015-2013-5 |
MR 3355053
[70] Zarei, A., Tavakoli, S.:
Hopf bifurcation analysis and ultimate bound estimation of a new 4-D quadratic autonomous hyper-chaotic system. Appl. Math. Comput. 291 (2016), 323-339.
DOI 10.1016/j.amc.2016.07.023 |
MR 3534407