Previous |  Up |  Next

Article

Keywords:
Helmholtz theorem; chaos; hidden attractor; bifurcation; Hamilton energy
Summary:
Non-linearity is essential for occurrence of chaos in dynamical system. The size of phase space and formation of attractors are much dependent on the setting of nonlinear function and parameters. In this paper, a three-variable dynamical system is controlled by different nonlinear function thus a class of chaotic system is presented, the Hamilton function is calculated to find the statistical dynamical property of the improved dynamical systems composed of hidden attractors. The standard dynamical analysis is confirmed in numerical studies, and the dependence of attractors and Hamilton energy on non-linearity selection is discussed. It is found that lower average Hamilton energy can be detected when intensity of nonlinear function is enhanced. It indicates that non-linearity can decrease the energy cost triggering for dynamical behaviors.
References:
[1] Ahmad, W. M., Sprott, J. C.: Chaos in fractional-order autonomous nonlinear systems. Chaos 6 (2003), 339-351. DOI 10.1016/s0960-0779(02)00438-1
[2] Aihara, K., Takabe, T., Toyoda, M.: Chaotic neural networks. Phys. Lett. A 144 (2001), 333-340. DOI 10.1016/0375-9601(90)90136-c | MR 1045128
[3] Aram, Z., Jafari, S., al., J. Ma et: Using chaotic artificial neural networks to model memory in the brain. Commun. Nonlinear Sci. Numer. Simulat. 44 (2017), 449-459. DOI 10.1016/j.cnsns.2016.08.025 | MR 3554829
[4] Bao, B. C., Xu, J. P., Liu, Z.: Initial state dependent dynamical behaviors in a Memristor based chaotic circuit. Chinese Phys. Lett. 27 (2010), 070504. DOI 10.1088/0256-307x/27/7/070504
[5] Barati, K., Jafari, S., al., J. C. Sprott et: Simple chaotic flows with a curve of equilibria. Int. J. Bifurcat. Chaos 26 (2016), 1630034. DOI 10.1142/s0218127416300342 | MR 3574802
[6] Barrow-Green, J.: Poincaré and the three body problem. Amer. Math. Soc. 2 (1997). MR 1415387
[7] Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circ. Theory 18 (1971), 507-519. DOI 10.1109/tct.1971.1083337
[8] Dantsev, D.: A Novel type of chaotic attractor for quadratic systems without equilibriums. Int. J. Bifurcat. Chaos 12 (2002), 659-661. DOI 10.1142/s0218127402004620
[9] Ditto, W. L., Rauseo, S. N., Spano, M. L.: Experimental control of chaos. Phys. Rev. Lett. 65 (1991), 3211-3214. DOI 10.1103/physrevlett.65.3211
[10] Dudkowski, D., Jafari, S., al., T. Kapitaniak et: Hidden attractors in dynamical systems. Phys. Rep. 637 (2016), 1-50. DOI 10.1016/j.physrep.2016.05.002 | MR 3510463
[11] Ermakov, I. V., Kingni, S. T., al., V. Z. Tronciu et: Chaotic semiconductor ring lasers subject to optical feedback: Applications to chaos-based communications. Optics Commun. 286 (2013), 265-272. DOI 10.1016/j.optcom.2012.08.063
[12] Feigenbaum, M. J.: The onset spectrum of turbulence. Phys. Lett. A 74 (1979), 375-378. DOI 10.1016/0375-9601(79)90227-5 | MR 0591635
[13] Garfinkel, A., Spano, M. L., al., W. L. Ditto et: Controlling cardiac chaos. Science 257 (1992), 1230-1235. DOI 10.1126/science.1519060
[14] Gotthans, T., Petržela, J.: New class of chaotic systems with circular equilibrium. Nonlinear Dyn. 81 (2015), 1141-1149. DOI 10.1007/s11071-015-2056-7 | MR 3367144
[15] Gotthans, T., Sprott, J. C., Petržela, J.: Simple Chaotic Flow with Circle and Square Equilibrium. Int. J. Bifurcat. Chaos 26 (2016), 1650137. DOI 10.1142/s0218127416501376 | MR 3533673
[16] Guo, Y. L., Qi, G. Y., Hamam, Y.: A multi-wing spherical chaotic system using fractal process. Nonlinear Dyn. 85 (2016), 2765-2775. DOI 10.1007/s11071-016-2861-7 | MR 3367161
[17] Hu, X., Liu, C., al., L. Liu et: Multi-scroll hidden attractors in improved Sprott A system. Nonlinear Dyn. 86 (2016), 1725-1734. DOI 10.1007/s11071-016-2989-5
[18] Itoh, M., Chua, L. O.: Memristor oscillators. Int. J. Bifurcat. Chaos 8 (2008), 3183-3206. DOI 10.1142/s0218127408022354 | MR 2487909
[19] Jafari, M. A., Mliki, E., al., A. Akgul et: Chameleon: the most hidden chaotic flow. Nonlinear Dyn. 88 (2017), 2303-2317. DOI 10.1007/s11071-017-3378-4 | MR 3650512
[20] Jafari, S., Sprott, J. C.: Simple chaotic flows with a line equilibrium. Chaos Solutons Fractals 57 (2013), 79-84. DOI 10.1016/j.chaos.2013.08.018 | MR 3128600 | Zbl 1355.37056
[21] Jafari, S., Sprott, J. C., al., V. T. Pham et: Simple chaotic 3D flows with surfaces of equilibria. Nonlinear Dyn. 86 (2016), 1349-1358. DOI 10.1007/s11071-016-2968-x
[22] Jia, B., Gu, H. G., al., L. Li et: Dynamics of period-doubling bifurcation to chaos in the spontaneous neural firing patterns. Cogn. Neurodyn. 6 (2012), 89-106. DOI 10.1007/s11571-011-9184-7
[23] Kennedy, M. P.: Chaos in the Colpitts oscillator. IEEE Trans. Circ. Syst. I 41 (1994), 711-774. DOI 10.1109/81.331536
[24] Kobe, D. H.: Helmholtz's theorem revisited. Amer. J. Physics 54 (1986), 552-554. DOI 10.1119/1.14562
[25] Kwok, H. S., Tang, W. K. S.: A fast image encryption system based on chaotic maps with finite precision representation. Chaos Solitons Fractals 32 (2007), 1518-1529. DOI 10.1016/j.chaos.2005.11.090 | MR 2286314
[26] Leonov, G. A., Kuznetsov, N. V., Vagaitsev, V. I.: Hidden attractor in smooth Chua systems. Physica D 241 (2012), 1482-1486. DOI 10.1016/j.physd.2012.05.016 | MR 2957820
[27] Leonov, G. A., Kuznetsov, N. V., Vagaitsev, V. I.: Localization of hidden Chua's attractors. Phys. Lett. A 375 (2011), 2230-2233. DOI 10.1016/j.physleta.2011.04.037 | MR 2800438 | Zbl 1242.34102
[28] Leonov, G. A., Kuznetsov, N. V., Vagaitsev, V. I.: Hidden attractor in smooth Chua systems. Physica D 241 (2012), 1482-1486. DOI 10.1016/j.physd.2012.05.016 | MR 2957820
[29] Leonov, G. A., Kuznetsov, N. V., Mokaev, T. N.: Homoclinic orbit and hidden attractor in the Lorenz-like system describing the fluid convection motion in the rotating cavity. Commun. Nonlinear Sci. Numer. Simulat. 28 (2015), 166-176. DOI 10.1016/j.cnsns.2015.04.007 | MR 3348101
[30] Li, C., Li, S., al., M. Asim et: On the security defects of an image encryption scheme. Image Vision Computing 27 (2009), 1371-1381. DOI 10.1016/j.imavis.2008.12.008
[31] Li, Y. Y., G., H., Gu: The distinct stochastic and deterministic dynamics between period-adding and period-doubling bifurcations of neural bursting patterns. Nonlinear Dyn. 87 (2017), 2541-2562. DOI 10.1007/s11071-016-3210-6
[32] Li, X., Li, C., Lee, I. K.: Chaotic image. 125 (2016), 48-63. DOI 10.1016/j.sigpro.2015.11.017
[33] Li, F., Yao, C. G.: The infinite-scroll attractor and energy transition in chaotic circuit. Nonlinear Dyn. 84 (2016), 2305-2315. DOI 10.1007/s11071-016-2646-z | MR 3504299
[34] Li, T. Y., Yorke, J. Y.: Period three implies Chaos. Amer. Math. Monthly 82 (1975), 985-992. DOI 10.2307/2318254 | MR 0385028
[35] Lorenz, E. N.: Deterministic nonperiodic flow. J. Atmospher. Sci. 20 (1963), 130-141. DOI 10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
[36] Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205 (2016), 375-381. DOI 10.1016/j.neucom.2016.05.004
[37] Lv, M., Wang, C., al., G. Ren et: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85 (2016), 1479-1490. DOI 10.1007/s11071-016-2773-6
[38] Ma, J., Wu, X. Y., al., R. T. Chu et: Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice. Nonlinear Dyn. 76 (2014), 1951-1962. DOI 10.1007/s11071-014-1260-1
[39] Ma, J., Li, A. B., al., Z. S. Pu et: A time-varying hyperchaotic system and its realization in circuit. Nonlinear Dyn. 62 (2010), 535-541. DOI 10.1007/s11071-010-9739-x
[40] Ma, J., Mi, L., al., P. Zhou et: Phase synchronization between two neurons induced by coupling of electromagnetic field. Appl. Math. Comput. 307 (2017), 321-328. DOI 10.1016/j.amc.2017.03.002 | MR 3632742
[41] Ma, J., Song, X. L., al., J. Tang et: Wave emitting and propagation induced by autapse in a forward feedback neuronal network. Neurocomputing 167 (2015), 378-389. DOI 10.1016/j.neucom.2015.04.056
[42] Ma, J., Wu, F., al., W. Jin et: Calculation of Hamilton energy and control of dynamical systems with different types of attractors. Chaos 27 (2017), 481-495. DOI 10.1063/1.4983469 | MR 3650956
[43] Ma, J., Wu, F. Q., al., G. D. Ren et: A class of initials-dependent dynamical systems. Appl. Math. Comput. 298 (2017), 65-76. DOI 10.1016/j.amc.2016.11.004 | MR 3582328
[44] Ma, J., Wu, F., Wang, C.: Synchronization behaviors of coupled neurons under electromagnetic radiation. Int. J. Mod Phys. B 31 (2017), 1650251. DOI 10.1142/s0217979216502519 | MR 3599028
[45] Ma, J., Zhang, A. H., al., Y. F. Xia et: Optimize design of adaptive synchronization controllers and parameter observers in different hyperchaotic systems. Appl. Math. Comput. 215 (2010), 3318-3326. DOI 10.1016/j.amc.2009.10.020 | MR 2576820
[46] May, R. M.: Simple mathematical models with very complicated dynamics. Nature 261 (1976), 459-467. DOI 10.1038/261459a0 | Zbl 0527.58025
[47] Molaie, M., Jafari, S., al., J. C. Sprott et: Simple chaotic flows with one stable equilibrium. Int. J. Bifurcat. Chaos (2013), 1350188. DOI 10.1142/s0218127413501885 | MR 3150373
[48] Muthuswamy, B.: Implementing memristor based chaotic circuits. Int. J. Bifurcat. Chaos 20 (2010), 1335-1350. DOI 10.1142/s0218127410026514
[49] Pham, V- T., Jafari, S., al., X. Wang X et: A chaotic system with different shapes of equilibria. Int. J. Bifurcat. Chaos 26 (2016), 1650069. DOI 10.1142/s0218127416500693 | MR 3494063
[50] Pham, V. T., Volos, C., Jafari, S.: A Chaotic system with different families of hidden attractors. Int. J. Bifurcat. Chaos 26 (2016), 1650139. DOI 10.1142/s021812741650139x | MR 3533675
[51] Piper, J. R., Sprott, J. C.: Simple autonomous chaotic circuit. IEEE Trans. Circ. Syst. II 57 (2010), 730-734. DOI 10.1109/tcsii.2010.2058493
[52] Qi, G. Y., Chen, G. R.: A spherical chaotic system. Nonlinear Dyn. 81 (2015), 1381-1392. DOI 10.1007/s11071-015-2075-4 | MR 3367161
[53] Ren, G. D., Xu, Y., Wang, C. N.: Synchronization behavior of coupled neuron circuits composed of memristors. Nonlinear Dyn. 88 (2017), 893-901. DOI 10.1007/s11071-015-2075-4
[54] Ryeu, J. K., Aihara, K., Tsuda, I.: Fractal encoding in a chaotic neural network. Phys. Rev. E 64 (2001), 046202. DOI 10.1103/physreve.64.046202
[55] Shaw, R.: The dripping faucet as a model chaotic system. Aerial Press, Santa Cruz 1984. MR 1101814
[56] Song, X. L., Jin, W. Y., Ma, J.: Energy dependence on the electric activities of a neuron. Chinese Phys. B 24 (2015), 604-609. DOI 10.1088/1674-1056/24/12/128710
[57] Strukov, D. B., Snider, G. S., al., D. R. Stewart et: The missing memristor found. Nature 453( 2008), 80-83. DOI 10.1038/nature06932
[58] Wang, Z. H., Cang, S. J., al., E. O. Ochola et: A hyperchaotic system without equilibrium. Nonlinear Dyn. 69 (2012), 531-537. DOI 10.1007/s11071-011-0284-z | MR 2929891
[59] Wang, X., Chen, G. R.: Constructing a chaotic system with any number of equilibria. Nonlinear Dyn. 71 (2013), 429-436. DOI 10.1007/s11071-012-0669-7 | MR 3015249
[60] Wang, C., Chu, R., Ma, J.: Controlling a chaotic resonator by means of dynamic track control. Complexity 21 (2015), 370-378. DOI 10.1002/cplx.21572 | MR 3407876
[61] Wang, S., Kuang, J., al., J. Li et: Chaos-based secure communications in a large community. Phys. Rev. E 66 (2002), 065202. DOI 10.1103/physreve.66.065202
[62] Wang, C. N., Ma, J., al., Y. Liu et: Chaos control, spiral wave formation, and the emergence of spatiotemporal chaos in networked Chua circuits. Nonlinear Dyn. 67 (2012), 139-146. DOI 10.1007/s11071-011-9965-x
[63] Wang, C. N., Wang, Y., Ma, J.: Calculation of Hamilton energy function of dynamical system by using Helmholtz theorem. Acta Physica Sinica 65 (2016), 240501.
[64] Wolf, A., Swift, J. B., al., H. L. Swinney et: Determining Lyapunov exponents from a time series. Physica D 16 (1985), 285-317. DOI 10.1016/0167-2789(85)90011-9 | MR 0805706
[65] Wu, C. W., Chua, L. O.: A simple way to synchronize chaotic systems with applications to secure communication systems. Int. J. Bifurcat. Chaos 3 (1993), 1619-1627. DOI 10.1142/s0218127493001288
[66] Wu, X. Y., Ma, J., al., L. H. Yuan et: Simulating electric activities of neurons by using PSPICE. Nonlinear Dyn. 75 (2014), 113-126. DOI 10.1007/s11071-013-1053-y | MR 3144840
[67] Yalcin, M. E: Multi-scroll and hypercube attractors from a general jerk circuit using Josephson junctions. Chaos Solutons Fractals 34 (2007), 1659-1666. DOI 10.1016/j.chaos.2006.04.058
[68] Yang, T.: A survey of chaotic secure communication systems. Int. J. Comput. Cogn. 2 (2004), 81-130.
[69] Zarei, A.: Complex dynamics in a 5-D hyper-chaotic attractor with four-wing, one equilibrium and multiple chaotic attractors. Nonlinear Dyn. 81 (2015), 585-605. DOI 10.1007/s11071-015-2013-5 | MR 3355053
[70] Zarei, A., Tavakoli, S.: Hopf bifurcation analysis and ultimate bound estimation of a new 4-D quadratic autonomous hyper-chaotic system. Appl. Math. Comput. 291 (2016), 323-339. DOI 10.1016/j.amc.2016.07.023 | MR 3534407
Partner of
EuDML logo