[3] Ben-Asher, J. Z.:
Optimal Control Theory with Aerospace Applications. American Institute of Aeronautics and Astronautics, Reston 2010.
DOI 10.2514/4.867347
[4] Boyd, J. P.:
Chebyshev and Fourier Spectral Methods. Second revised edition. Dover Publications, New York 2001.
MR 1874071
[5] Boyd, J. P., Petschek, R.:
The relationships between Chebyshev, Legendre and Jacobi polynomials: the generic superiority of Chebyshev polynomials and three important exceptions. J. Scientific Comput. 59 (2014), 1-27.
DOI 10.1007/s10915-013-9751-7 |
MR 3167725
[7] Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A.:
Spectral Methods: Fundamentals in Single Domains. Springer-Verlag, Berlin 2006.
MR 2223552
[8] Cristiani, E., Martinon, P.:
Initialization of the shooting method via the Hamilton-Jacobi-Bellman approach. J. Optim. Theory Appl. 146 (2010), 321-346.
DOI 10.1007/s10957-010-9649-6 |
MR 2679665
[10] Elnagar, G., Kazemi, M. A., Razzaghi, M.:
The pseudospectral Legendre method for discretizing optimal control problems. IEEE Trans. Automat. Control 40 (1995), 1793-1796.
DOI 10.1109/9.467672 |
MR 1354521
[11] Fahroo, F., Ross, I. M.:
Direct trajectory optimization by a Chebyshev pseudospectral method. J. Guid. Control Dynam. 25 (2002), 160-166.
DOI 10.2514/2.4862
[12] Foroozandeh, Z., Shamsi, M., Azhmyakov, V., Shafiee, M.:
A modified pseudospectral method for solving trajectory optimization problems with singular arc. Math. Methods Appl. Sci. 40 (2017), 1783-1793.
DOI 10.1002/mma.4097 |
MR 3622433
[14] Hanert, E., Piret, C.:
A Chebyshev pseudospectral method to solve the space-time tempered fractional diffusion equation. SIAM J. Scientif. Comput. 36 (2014), A1797-A1812.
DOI 10.1137/130927292 |
MR 3246904
[15] Huang, J., Lin, C. F.:
Numerical approach to computing nonlinear $ H_\infty $ control laws. J. Guid. Control Dynam. 18 (1995), 989-994.
DOI 10.2514/3.21495
[17] Kang, W., Bedrossian, N.: Pseudospectral optimal control theory makes debut flight, Saves {NASA} 1m in Under Three Hours. SIAM News 40 (2007).
[18] Kang, W., Gong, Q., Ross, I. M., Fahroo, F.:
On the convergence of nonlinear optimal control using pseudospectral methods for feedback linearizable systems. Int. J. Robust Nonlin. 17 (2007), 1251-1277.
DOI 10.1002/rnc.1166 |
MR 2354643
[19] Kirk, D. E.: Optimal Control Therory: An Introduction. Prentice-Hall, New Jersey 1970.
[20] Kleinman, D.:
On an iterative technique for Riccati equation computations. IEEE Trans. Automat. Control 13 (1968), 114-115.
DOI 10.1109/tac.1968.1098829
[21] Lancaster, P., Rodman, L.:
Algebraic Riccati Equations. Clarendon, Wotton-under-Edge 1995.
MR 1367089
[22] Lewis, F. L., Syrmos, V. L.:
Optimal Control. John Wiley, New York 1995.
MR 0833285
[23] Liberzon, D.:
Calculus of Variations and Optimal Control Theory. Princeton University Press 2012.
MR 2895149
[24] Nagy, Z. K., Braatz, R D.:
Open-loop and closed-loop robust optimal control of batch processes using distributional and worst-case analysis. J. Process Control. 14 (2004), 411-422.
DOI 10.1016/j.jprocont.2003.07.004
[25] Nik, H. S., Shateyi, S.:
Application of optimal HAM for finding feedback control of optimal control problems. Math. Probl. Eng. 2013 (2013), 1-10.
DOI 10.1155/2013/914741 |
MR 3043723
[26] Orszag, S. A.:
Comparison of pseudospectral and spectral approximation. Stud. Appl. Math. 51 (1972), 253-259.
DOI 10.1002/sapm1972513253
[27] Parand, K., Rezaei, A. R., Ghaderi, S. M.:
A modified pseudospectral scheme for accurate solution of Bang-Bang optimal control problems. Comm. Nonlinear Sci. Numer. Simul. 16 (2011), 274-283.
DOI 10.1016/j.cnsns.2010.03.022 |
MR 2679180
[28] Rakhshan, S. A., Effati, S., Kamyad, A. Vahidian:
Solving a class of fractional optimal control problems by the Hamilton-Jacobi-Bellman equation. J. Vib. Control 1 (2016), 1-16.
MR 3785617
[30] Ross, I. M., Fahroo, F.:
Pseudospectral knotting methods for solving nonsmooth optimal control problems. J. Guid. Control Dynam. 27 (2004), 397-405.
DOI 10.2514/1.3426
[31] Sabeh, Z., Shamsi, M., Dehghan, M.: Distributed optimal control of the viscous Burgers equation via a Legendre pseudo-spectral approach.
[32] Taher, A. H. Saleh, Malek, A., Momeni-Masuleh, S. H.:
Chebyshev differentiation matrices for efficient computation of the eigenvalues of fourth-order Sturm-Liouville problems. Appl. Math. Model. 37 (2013), 4634-4642.
DOI 10.1016/j.apm.2012.09.062 |
MR 3020599
[33] Schafer, R. D.: An Introduction to Nonassociative Algebras. Stillwater, Oklahoma 1969.
[34] Shamsi, M.:
A modified pseudospectral scheme for accurate solution of Bang-Bang optimal control problems. Optimal Control Appl. Methods 32 (2010), 668-680.
DOI 10.1002/oca.967 |
MR 2871837
[35] Shamsi, M., Dehghan, M.:
Determination of a control function in three-dimensional parabolic equations by Legendre pseudospectral method. Numer. Methods Partial Differential Equations 28 (2012), 74-93.
DOI 10.1002/num.20608 |
MR 2864659
[36] Swaidan, W., Hussin, A.:
Feedback control method using Haar wavelet operational matrices for solving optimal control problems. Abs. Appl. Anal. 2013 (2013), 1-8.
DOI 10.1155/2013/240352 |
MR 3093751
[38] Vlassenbroeck, J., Doreen, R. Van:
A Chebyshev technique for solving nonlinear optimal control problems. IEEE Trans. Automat. Control 33 (1988), 333-340.
DOI 10.1109/9.192187 |
MR 0931197
[39] Wang, S., Gao, F., Teo, K. L.:
An upwind finite-difference method for the approximation of viscosity solutions to Hamilton-Jacobi-Bellman equations. IMA J. Math. Control I. 17 (2000), 167-178.
DOI 10.1093/imamci/17.2.167 |
MR 1769274
[40] Yan, Zh., Wang, J.:
Model predictive control of nonlinear systems with unmodeled dynamics based on feedforward and recurrent neural networks. IEEE Trans. Ind. Informat. 8 (2012), 746-756.
DOI 10.1109/tii.2012.2205582
[41] Yershov, D. S., Frazzoli, E.:
Asymptotically optimal feedback planning using a numerical Hamilton-Jacobi-Bellman solver and an adaptive mesh refinement. Int. J. Robot. Res. 35 (2016), 565-584.
DOI 10.1177/0278364915602958
[42] Yong, J., Zhou, X. Y.:
Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer-Verlag, New York 1999.
MR 1696772