[1] Altshiller-Court, N.:
The isosceles tetrahedron. Modern pure solid geometry, Chelsea, New York, 1979, 94–101 and 300.
MR 0172153
[2] Brandts, J., Korotov, S., Křížek, M.: O triangulacích bez tupých úhlů. Pokroky Mat. Fyz. Astronom. 50 (2005), 193–207.
[4] Brandts, J., Křížek, M.: Simplicial vertex-normal duality with applications to well-centered simplices. Proc. of the 12th European Conf. on Numer. Math. and Advanced Appl., ENUMATH 2017, Voss, Nordbotten, Jan Martin, et al., (eds.), Springer, Berlin–Heidelberg, 2018, 8 pp.
[6] Edmonds, A. L., Hajja, M., Martini, H.:
Coincidences of simplex centers and related facial structures. Beitr. Algebra Geom. 46 (2005), 491–512.
MR 2196932
[7] Fiedler, M.:
Über qualitative Winkeleigenschaften der Simplexe. Czechoslovak Math. J. 7 (1957), 463–476.
MR 0094740 |
Zbl 0093.33602
[8] Fiedler, M.: Matice a grafy v euklidovské geometrii. Dimatia, MFF UK, Praha, 2001.
[11] Klee, V., Wagon, S.:
Old and new unsolved problems in plane geometry and number theory. Math. Assoc. Amer., Washington, DC, 1991.
MR 1133201
[14] Rektorys, K.: Přehled užité matematiky I. Prometheus, Praha, 1995.
[15] Sommerville, D. M. Y.: Space-filling tetrahedra in Euclidean space. Proc. Edinb. Math. Soc. 41 (1923), 49–57.
[16] VanderZee, E., Hirani, A. N., Guoy, D., Ramos, E. A.:
Well-centered triangulation. SIAM J. Sci. Comput. 31 (2009/2010), 4497–4523.
DOI 10.1137/090748214 |
MR 2594991
[17] VanderZee, E., Hirani, A. N., Guoy, D., Zharnitsky, V., Ramos, E. A.:
Geometric and combinatorial properties of well-centered triangulations in three and higher dimensions. Comput. Geom. 46 (2013), 700–724.
DOI 10.1016/j.comgeo.2012.11.003 |
MR 3030662 |
Zbl 1269.65021
[18] Vatne, J. E.:
The probability that a simplex is well-centered. Appl. Math. 62 (2017), 213–223.
MR 3661037