[2] Dostál, Z., Horák, D., Kučera, R.:
Total FETI — an easier implementable variant of the FETI method for numerical solution of elliptic PDE. Commun. Numer. Methods Eng. 22 (2006), 1155–1162.
DOI 10.1002/cnm.881 |
MR 2282408
[3] Dostál, Z., Kozubek, T., Sadowská, M, Vondrák, V.:
Scalable algorithms for contact problems. AMM 36, Springer, New York, 2016.
MR 3586594
[4] Farhat, C., Lesoinne, M., Pierson, K.:
A scalable dual-primal domain decomposition method. Numer. Linear Algebra Appl. 7 (2000), 687–714.
MR 1802366
[5] Farhat, C., Mandel, J., Roux, F. -X.:
Optimal convergence properties of the FETI domain decomposition method. Comput. Methods Appl. Mech. Engrg. 115 (1994), 365–385.
DOI 10.1016/0045-7825(94)90068-X |
MR 1285024
[8] Klawonn, A., Rheinbach, O.:
Highly scalable parallel domain decomposition methods with an application to biomechanics. Z. Angew. Math. Mech. 90 (2010), 5–32.
DOI 10.1002/zamm.200900329 |
MR 2603676
[9] Marčuk, G. I.:
Metody numerické matematiky. Academia, Praha, 1987.
MR 0931536
[10] Říha, L., Brzobohatý, T., Markopoulos, A., Meca, O.: IT4I Espreso – fast solver for HPC users. [online]. Dostupné z: espreso.it4i.cz
[11] Schwarz, H. A.: Über einen Grenzübergang durch alternierendes Verfahren. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 15 (1870), 272–286.
[12] Toselli, A., Widlund, O. B.:
Domain Decomposition Methods – Algorithms and Theory. CM 34, Springer, Berlin, 2005.
MR 2104179
[13] Vodstrčil, P., Bouchala, J., Jarošová, M., Dostál, Z.:
On conditioning of Schur complements of H-TFETI clusters for 2D problems governed by Laplacian. Appl. Math. 62 (2017), 699–718.
DOI 10.21136/AM.2017.0193-17 |
MR 3745747