Previous |  Up |  Next

Article

Keywords:
dynamic conditional correlation; dynamic conditional covariance; vector random coefficient moving average; stationarity; invertibility; asymptotic properties
Summary:
One of the most widely-used multivariate conditional volatility models is the dynamic conditional correlation (or DCC) specification. However, the underlying stochastic process to derive DCC has not yet been established, which has made problematic the derivation of asymptotic properties of the Quasi-Maximum Likelihood Estimators (QMLE). To date, the statistical properties of the QMLE of the DCC parameters have purportedly been derived under highly restrictive and unverifiable regularity conditions. The paper shows that the DCC model can be obtained from a vector random coefficient moving average process, and derives the stationarity and invertibility conditions of the DCC model. The derivation of DCC from a vector random coefficient moving average process raises three important issues, as follows: (i) demonstrates that DCC is, in fact, a dynamic conditional covariance model of the returns shocks rather than a dynamic conditional correlation model; (ii) provides the motivation, which is presently missing, for standardization of the conditional covariance model to obtain the conditional correlation model; and (iii) shows that the appropriate ARCH or GARCH model for DCC is based on the standardized shocks rather than the returns shocks. The derivation of the regularity conditions, especially stationarity and invertibility, may subsequently lead to a solid statistical foundation for the estimates of the DCC parameters. Several new results are also derived for univariate models, including a novel conditional volatility model expressed in terms of standardized shocks rather than returns shocks, as well as the associated stationarity and invertibility conditions.
References:
[1] Aielli, G. P.: Dynamic conditional correlations: On properties and estimation. J. Business Econom. Statist. 31 (2013), 282-299. DOI 10.1080/07350015.2013.771027 | MR 3173682
[2] Amemiya, T.: Advanced Econometrics. Harvard University Press, Cambridge 1985.
[3] Baba, Y., Engle, R. F., Kraft, D., Kroner, K. F.: Multivariate simultaneous generalized ARCH. Unpublished manuscript, Department of Economics, University of California, San Diego 1985, (the published version is given in Engle and Kroner [16]). MR 1325104
[4] Bollerslev, T.: Generalised autoregressive conditional heteroscedasticity. J. Econometr. 31 (1986), 307-327. DOI 10.1016/0304-4076(86)90063-1 | MR 0853051
[5] Caporin, M., McAleer, M.: Ten things you should know about the dynamic conditional correlation representation. Econometrics 1 (2013), 1, 115-126. DOI 10.3390/econometrics1010115
[6] Chang, C.-L., McAleer, M.: A simple test for causality in volatility. Econometrics 5 (2017), 1, 5 pp. DOI 10.3390/econometrics5010015
[7] Chang, C.-L., McAleer, M., Tansuchat, R.: Modelling conditional correlations for risk diversification in crude oil markets. J. Energy Markets 2 (2009/10), 4, 1-23. DOI 10.2139/ssrn.1401331
[8] Chang, C.-L., McAleer, M., Tansuchat, R.: Analyzing and forecasting volatility spillovers, asymmetries and hedging in major oil markets. Energy Economics 32 (2010), 1445-1455. DOI 10.1016/j.eneco.2010.04.014
[9] Chang, C.-L., McAleer, M., Tansuchat, R.: Crude oil hedging strategies using dynamic multivariate GARCH. Energy Economics 33 (2011), 5, 912-923. DOI 10.1016/j.eneco.2011.01.009
[10] Chang, C.-L., McAleer, M., Tansuchat, R.: Conditional correlations and volatility spillovers between crude oil and stock index returns. North Amer. J. Econom. Finance 25 (2013), 116-138. DOI 10.1016/j.najef.2012.06.002
[11] Chang, C.-L., McAleer, M., Wang, Y.-A.: Modelling volatility spillovers for bio-ethanol, sugarcane and corn spot and futures prices. Renewable Sustainable Energy Rev. 81 (2018), 1, 1002-1018. DOI 10.1016/j.rser.2017.07.024
[12] Chang, C.-L., McAleer, M., Zuo, G. D.: Volatility spillovers and causality of carbon emissions, oil and coal spot and futures for the EU and USA. Sustainability 9 (2017), 10, p. 1789, 1-22. DOI 10.3390/su9101789
[13] Duan, J.-C.: Augmented GARCH$(p,q)$ process and its diffusion limit. J. Econometrics 79 (1997), 97-127. DOI 10.1016/s0304-4076(97)00009-2 | MR 1457699
[14] Engle, R. F.: Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50 (1982), 987-1007. DOI 10.2307/1912773 | MR 0666121
[15] Engle, R. F.: Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional hereoskedasticity models. J. Business Econom. Statist. 20 (2002), 339-350. DOI 10.1198/073500102288618487 | MR 1939905
[16] Engle, R. F., Kroner, K. F.: Multivariate simultaneous generalized ARCH. Econometr. Theory 11 (1995), 122-150. DOI 10.1017/s0266466600009063 | MR 1325104
[17] Hentschel, L.: All in the family: Nesting symmetric and asymmetric GARCH models. J. Financial Economics 39 (1995), 71-104. DOI 10.1016/0304-405x(94)00821-h
[18] Jeantheau, T.: Strong consistency of estimators for multivariate ARCH models. Econometr. Theory 14 (1998), 70-86. DOI 10.1017/s0266466698141038 | MR 1613694
[19] Ling, S., McAleer, M.: Asymptotic theory for a vector ARMA-GARCH model. Econometr. Theory 19 (2003), 280-310. DOI  | MR 1966031
[20] Marek, T.: On invertibility of a random coefficient moving average model. Kybernetika 41 (2005), 01, 743-756. MR 2193863
[21] McAleer, M., Chan, F., Hoti, S., Lieberman, O.: Generalized autoregressive conditional correlation. Econometr. Theory 24 (2008), 6, 1554-1583. DOI 10.1017/s0266466608080614 | MR 2456538
[22] Tsay, R. S.: Conditional heteroscedastic time series models. J. Amer. Statist. Assoc. 82 (1987), 590-604. DOI 10.2307/2289470 | MR 0898364
[23] Tse, Y. K., Tsui, A. K. C.: A multivariate GARCH model with time-varying correlations. J. Business Econom. Statist. 20 (2002), 351-362. DOI 10.1198/073500102288618496 | MR 1939906
Partner of
EuDML logo