Previous |  Up |  Next

Article

Keywords:
extreme value theory; mixing processes; tail index estimation
Summary:
In this paper, we propose two estimators for a heavy tailed MA(1) process. The first is a semi parametric estimator designed for MA(1) driven by positive-value stable variables innovations. We study its asymptotic normality and finite sample performance. We compare the behavior of this estimator in which we use the Hill estimator for the extreme index and the estimator in which we use the t-Hill in order to examine its robustness. The second estimator is for MA(1) driven by stable variables innovations using the relationship between the extremal index and the moving average parameter. We analyze their performance through a simulation study.
References:
[1] Brockwell, P. J., Davis, R. A.: Time Series: Theory and methods. Springer-Verlag, New York 1991. DOI 10.1007/978-1-4419-0320-4 | MR 1093459
[2] Cheng, S., Peng, L.: Confidence intervals for the tail index. Bernoulli 7 (2001), 751-760. DOI 10.2307/3318540 | MR 1867084
[3] Drees, H.: Weighted approximations of tail processes for $\beta$-mixing random variables. Ann. Appl. Probab. 10 (2000), 1274-1301. DOI 10.1214/aoap/1019487617 | MR 1810875
[4] Drees, H.: Extreme quantile estimation for dependent data, with applications to finance. Bernoulli 9 (2003), 617-657. DOI 10.3150/bj/1066223272 | MR 1996273
[5] Fabián, Z., Stehlík, M.: On Robust and Distribution Sensitive Hill Like Method. Tech. Rep. IFAS Reasearch Paper Series 43 (2009).
[6] Feigin, P. D., Kratz, M. F., Resnick, S. I.: Parameter estimation for moving averages with positive innovations. Ann. Appl. Probab. 6 (1996), 1157-1190. DOI 10.1214/aoap/1035463327 | MR 1422981
[7] Ferro, C. A. T., Segers, J.: Inference for clusters of extreme values. J. Roy. Statist. Soc., Ser. B 65 (2003), 545-556. DOI 10.1111/1467-9868.00401 | MR 1983763
[8] Fisher, R. A., Tippett, L. H. C.: Limiting forms of the frequency distribution of the largest or smallest member of a sample. Math. Proc. Cambridge Philosophical Soc. 24 (1928), 180-190. DOI 10.1017/S0305004100015681
[9] Haan, L. de, Mercadier, C., Zhou, C.: Adapting extreme value statistics to financial time series: dealing with bias and serial dependence. Finance Stoch. 20 (2016), 321-354. DOI 10.1007/s00780-015-0287-6 | MR 3479324
[10] Hall, P., Welsh, A. H.: Adaptive estimates of parameters of regular variation. Ann. Statist. 13 (1985), 331-341. DOI 10.1214/aos/1176346596 | MR 0773171
[11] Hill, B. M.: A simple general approach to inference about the tail of a distribution. Ann. Statist. 3 (1975), 1163-1174. DOI 10.1214/aos/1176343247 | MR 0378204
[12] Jordanova, P., Stehlík, M., Fabián, Z., Střelec, L.: On estimation and testing for Pareto tails. Pliska Stud. Math. Bulgar. 22 (2013), 89-108. MR 3203698
[13] Jordanova, P., Dušek, J., Stehlík, M.: Modeling methane emission by the infinite moving average process. Chemometrics and Intelligent Laboratory Systems 122 (2013), 40-49. DOI 10.1016/j.chemolab.2012.12.006
[14] Jordanova, P., Fabián, Z., Hermann, P., Střelec, L., Rivera, A., Girard, S., Torres, S., Stehlík, M.: Weak properties and robustness of t-Hill estimators. Extremes 19 (2016), 591-626. DOI 10.1007/s10687-016-0256-2 | MR 3558347
[15] Koutrouvelis, I. A.: Regression-type estimation of the parameters of stable law. J. Amer. Statist. Assoc. 75 (1980), 918-928. DOI 10.1080/01621459.1980.10477573 | MR 0600977
[16] Leadbetter, M. R., Lindgren, G., Rootzen, H.: Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag, New York 1983. DOI 10.1007/978-1-4612-5449-2 | MR 0691492
[17] Mami, T. F., Ouadjed, H.: Semi parametric estimation for autoregressive process with infinite variance. ProbStat Forum 9 (2016), 73-79.
[18] McCulloch, J. H.: Simple consistent estimators of stable distribution parameters. Commun. Statist. - Simulation and Computation 15 (1986), 1109-1136. DOI 10.1080/03610918608812563 | MR 0876783 | Zbl 0612.62028
[19] Meerschaert, M. M., Scheffler, H. P: A simple robust estimation method for the thickness of heavy tails. J. Statist. Planning Inference 71 (1998), 19-34. DOI 10.1016/s0378-3758(98)00093-7 | MR 1651847
[20] Neves, C., Alves, M. I. Fraga: Reiss and Thomas automatic selection of the number of extremes. Comput. Statist. Data Anal. 47 (2004), 689-704. DOI 10.1016/j.csda.2003.11.011 | MR 2086488
[21] Nolan, J. P.: Maximum likelihood estimation and diagnostics for stable distributions. In: Lévy Processes (O. E. Barndorff-Nielsen, T. Mikosch, and S. Resnick, eds.), Brikhäuser, Boston 2001. DOI 10.1007/978-1-4612-0197-7_17 | MR 1833689 | Zbl 0971.62008
[22] Samorodnitsky, G., Taqqu, M.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman and Hall, New York 1994. MR 1280932
[23] Smith, R. L., Weissman, I.: Estimating the extremal index. J. Roy. Statist. Soc., Ser. B 56 (1994), 515-528. MR 1278224
[24] Süveges, M.: Likelihood estimation of the extremal index. Extremes 10 (2007), 41-55. DOI 10.1007/s10687-007-0034-2 | MR 2407640
[25] Weissman, I., Novak, S. Y.: On blocks and runs estimators of the extremal index. J. Statist. Planning Inference 66 (1998), 281-288. DOI 10.1016/s0378-3758(97)00095-5 | MR 1614480
Partner of
EuDML logo