[4] Basawa, I. V., Lund, R.:
Large sample properties of parameters estimates for periodic $ARMA$ models. J. Time Series Anal. 22 (2001), 6, 651-663.
DOI 10.1111/1467-9892.00246 |
MR 1867391
[6] Bibi, A., Francq, C.:
Consistent and asymptotically normal estimators for cyclically time-dependent linear models. Ann. Inst. Statist. Math. 55 (2003), 1, 41-68.
DOI 10.1007/bf02530484 |
MR 1965962
[7] Bibi, A., Oyet, A. J.:
Estimation of some bilinear time series models with time-varying coefficients. Stochastic Anal. Appl. 22 (2004), 2, 355-376.
DOI 10.1081/sap-120028595 |
MR 2037377
[8] Bibi, A., Aknouche, A.:
Yule-Walker type estimators in periodic bilinear models: strong consistency and asymptotic normality. Statist. Methods Appl. 19 (2010), 1, 1-30.
DOI 10.1007/s10260-008-0110-z |
MR 2591755
[12] Billingsley, P.:
Probability and Measure. Third edition. Wiley - Interscience 1995.
MR 1324786
[14] Boyles, R. A., Gardner, W. A.:
Cycloergodic properties of discrete-parameter nonstationary stochastic processes. IEEE, Trans. Inform. Theory 29 (1983), 105-114.
DOI 10.1109/tit.1983.1056613 |
MR 0711279
[15] Brandt, A.:
The stochastic equation $Y_{n+1}=A_{n}Y_{n-1}+B_{n}$ with stationary coefficients. Adv. Appl. Probab. 18 (1986), 1, 211-220.
DOI 10.2307/1427243 |
MR 0827336
[16] Chatterjee, S., Das, S.:
Parameter estimation in conditional heteroscedastic models. Comm. Stat. Theory Methods 32 (2003), 6, 1135-1153.
DOI 10.1081/sta-120021324 |
MR 1983236
[17] Florian, Z.:
Quasi-maximum likelihood estimation of periodic autoregressive, conditionally heteroscedastic. Time Series. Stochastic Models, Statistics and their Applications 122 (2015), 207-214.
DOI 10.1007/978-3-319-13881-7_23
[20] Francq, C., Zakoîan, J. M.:
Maximum likelihood estimation of pure $GARCH$ and $ARMA-GARCH$ processes. Bernoulli 10 (2004), 4, 605-637.
DOI 10.3150/bj/1093265632 |
MR 2076065
[21] Gardner, W. A., Nopolitano, A., Paura, L.:
Cyclostationarity: Half a century of research. Signal Process. 86 (2006), 4, 639-697.
DOI 10.1016/j.sigpro.2005.06.016
[22] Gladyshev, E. G.:
Periodically correlated random sequences. Soviet Math. 2 (1961), 385-388.
MR 0126873
[24] He, J., Yu, S., Cai, J.:
Numerical Analysis and improved algorithms for Lyapunov-exponent calculation of discrete-time chaotic systems. Int. J. Bifurcation Chaos 26 (2016), 13, 1-11.
DOI 10.1142/s0218127416502199 |
MR 3590146
[25] Kesten, H., Spitzer, F.:
Convergence in distribution for products of random matrices. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete 67 (1984), 363-386.
DOI 10.1007/bf00532045 |
MR 0761563
[27] Ling, S., Peng, L., Zho, F.:
Inference for special bilinear time series model. arXiv 2014.
MR 3300205
[29] Ngatchou-W, J.:
Estimation in a class of nonlinear heteroscedastic time series models. Elec. J. Stat. 2 (2008), 40-62.
DOI 10.1214/07-ejs157 |
MR 2386085
[30] Pan, J. Z., Li, G. D., Xie, Z.J.:
Stationary solution and parametric estimation for bilinear model driven by $ARCH$ noises. Science in China (Series $A$) 45 (2002), 12, 1523-1537.
MR 1955672
[32] Rao, T. Subba, Gabr, M. M.:
An introduction to bispectral analysis and bilinear time series models. Lecture Notes In Statistics 24 (1984), Springer Verlag, N.Y.
DOI 10.1007/978-1-4684-6318-7 |
MR 0757536