[1] Mohamad, D. Al:
Towards a better understanding of the dual representation of phi divergences. Statistical Papers (published on-line 2016.)
DOI 10.1007/s00362-016-0812-5
[2] Barron, A. R.: The convergence in information of probability density estimators. In: IEEE Int. Symp. Information Theory, Kobe 1988.
[5] Broniatowski, M., Toma, A., Vajda, I.:
Decomposable pseudodistances and applications in statistical estimation. J. Statist. Plann. Inference. 142 (2012), 9, 2574-2585.
DOI 10.1016/j.jspi.2012.03.019 |
MR 2922007
[6] Csiszár, I.:
Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizit on Markhoffschen Ketten. Publ. Math. Inst. Hungar. Acad. Sci., Ser. A 8 (1963), 84-108.
MR 0164374
[7] Csiszár, I.:
Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hungar. 2 (1967), 299-318.
MR 0219345
[8] Frýdlová, I., Vajda, I., Kůs, V.:
Modified power divergence estimators in normal model - simulation and comparative study. Kybernetika 48 (2012), 4, 795-808.
MR 3013399
[10] Győrfi, L., Vajda, I., Meulen, E. C. van der:
Family of point estimates yielded by $L_1$-consistent density estimate. In: $L_1$-Statistical Analysis and Related Methods (Y. Dodge, ed.), Elsevier, Amsterdam 1992, pp. 415-430.
MR 1214843
[11] Győrfi, L., Vajda, I., Meulen, E. C. van der:
Minimum Hellinger distance point estimates consistent under weak family regularity. Math. Methods Statist. 3 (1994), 25-45.
MR 1272629
[12] Győrfi, L., Vajda, I., Meulen, E. C. van der:
Minimum Kolmogorov distance estimates of parameters and parametrized distributions. Metrika 43 (1996), 237-255.
DOI 10.1007/bf02613911 |
MR 1394805
[13] Hrabáková, J., Kůs, V.:
The Consistency and Robustness of Modified Cramér-Von Mises and Kolmogorov-Cramér Estimators. Comm. Statist. - Theory and Methods 42 (2013), 20, 3665-3677.
DOI 10.1080/03610926.2013.802806 |
MR 3170957
[15] Kafka, P., Ősterreicher, F., Vincze, I.:
On powers of $f$-divergences defining a distance. Studia Sci. Mathem. Hungarica 26 (1991), 415-422.
MR 1197090
[16] Kůs, V.:
Blended $\phi$-divergences with examples. Kybernetika 39 (2003), 43-54.
MR 1980123
[18] Kůs, V., Morales, D., Vajda, I.:
Extensions of the parametric families of divergences used in statistical inference. Kybernetika 44 (2008), 1, 95-112.
MR 2405058
[20] Liese, F., Vajda, I.:
Convex Statistical Distances. Teubner, Leipzig 1987.
MR 0926905
[21] Liese, F., Vajda, I.:
On divergences and informations in statistics and information theory. IEEE Trans. Inform. Theory 52 (2006), 4394-4412.
DOI 10.1109/tit.2006.881731 |
MR 2300826
[23] Ősterreicher, F.:
On a class of perimeter-type distances of probability distributions. Kybernetika 32 (1996), 4, 389-393.
MR 1420130
[26] Vajda, I.: Theory of Statistical Inference and Information. Kluwer, Boston 1989.