[1] Ardakanian, O., Keshav, S., Rosenberg, C.:
Markovian models for home electricity consumption. In: Proc. 2nd ACM SIGCOMM Workshop on Green Betworking - GreenNets'11, 2011.
DOI 10.1145/2018536.2018544
[2] Aydinalp, M., Ugursal, V. I., Fung, A. S.:
Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks. Applied Energy 71 (2002), 87-110.
DOI 10.1016/s0306-2619(01)00049-6
[3] Berchtold, A., Raftery, A.:
The mixture transition distribution model for high-order Markov chains and non-Gaussian time series. Statist. Sci. 17 (2002), 328-356.
DOI 10.1214/ss/1042727943 |
MR 1962488
[4] Dickert, J., Schegner, P.: Residential load models for network planning purposes. In: Proc. Modern Electric Power Systems 2010, Wroclaw, pp. 1-6.
[5] Drenyovszki, R., Kovacs, L., Pinter, I., Olah, A., Tornai, K., Levendovszky, J.:
Power system reliability assessment for the residential sector based on Large Deviation Theory bounds. In: Proc. EnergyCon 2016, IEEE International Energy Conference, Leuven 2016.
DOI 10.1109/energycon.2016.7514106
[6] Grandjean, A., Adnot, J., Binet, G.:
A review and an analysis of the residential electric load curve models. Renewable and Sustainable Energy Reviews 16 (2012), 9, 6539-6565.
DOI 10.1016/j.rser.2012.08.013
[7] Kavgic, M., Mavrogianni, A., Mumovic, D., Summerfield, A., Stevanovic, Z., Djurovic-Petrovic, M.:
A review of bottom-up building stock models for energy consumption in the residential sector. Building and Environment 45 (2010), 1683-1697.
DOI 10.1016/j.buildenv.2010.01.021
[8] Kolter, J. Z., Johnson, M. J.: REDD: A public data set for energy disaggregation research. In: Proc. SustKDD Workshop on Data Mining Applications in Sustainability, 2011.
[9] Kong, W., Dong, Z. Y., Hill, D. J.:
A hierarchical hidden Markov model framework for home appliance modelling. IEEE Trans. Smart Grid PP (2016), 99, 1-1.
DOI 10.1109/tsg.2016.2626389
[10] Kovacs, L., Drenyovszki, R., Olah, A., Levendovszky, J., Tornai, K., Pinter, I.:
A probabilistic demand side management approach by consumption admission control. Tehnicki Vjesnik - Tehnical Gazette 24 (2017), 1, 199-207.
DOI 10.17559/tv-20151021201400
[11] Monacchi, A., Egarter, D., Elmenreich, W., D'Alessandro, S., Tonello, A. M.:
GREEND: An energy consumption dataset of households in Italy and Austria. In: Proc. 5th IEEE International Conference on Smart Grid Communications (SmartGridComm 14), Venice 2014.
DOI 10.1109/smartgridcomm.2014.7007698
[12] Nijhuis, M., Gibescu, M., Cobben, J. F. G.:
Bottom-up Markov Chain Monte Carlo approach for scenario based residential load modelling with publicly available data. Energy and Buildings 112 (2016), 121-129.
DOI 10.1016/j.enbuild.2015.12.004
[13] Paatero, J., Lund, P.:
A model for generating household electricity load profiles. Int. J. Energy Research 30 (2006), 273-290.
DOI 10.1002/er.1136
[14] Palacio, S. N., Valentine, K. F., Wong, M., Zhang, K. M.:
Reducing power system costs with thermal energy storage. Appl. Energy 129 (2014), 228-237.
DOI 10.1016/j.apenergy.2014.04.089
[15] Sancho-Tomas, A., Sumner, M., Robinson, D.:
A generalised model of electrical energy demand from small household appliances. Energy and Buildings 135 (2017), 350-366.
DOI 10.1016/j.enbuild.2016.10.044
[16] Schne, T., Jasko, Sz., Simon, Gy.: Dynamic models of a home refrigerator. In: Proc. 5th International Conference on Recent Achievements in Mechatronics, Automation, Computer Sciences and Robotics (MACRo 2015), pp. 103-112.
[17] Sossan, F., Lakshmanan, V., Costanzo, G. T., Marinelli, M., Douglass, P. J., Bindner, H.:
Grey-box modelling of a household refrigeration unit using time series data in application to demand side management. Sustainable Energy, Grids and Networks 5 (2016), 1-12.
DOI 10.1016/j.segan.2015.10.003
[18] Stephen, B., Galloway, S., Burt, G.:
Self-learning load characteristic models for smart appliances. IEEE Trans. Smart Grid 5 (2014), 5, 2432-2439.
DOI 10.1109/tsg.2014.2318375
[20] Swan, L. G., Ugursal, V. Ismet:
Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. Renewable Sustainable Energy Rev. 13 (2009), 1819-1835.
DOI 10.1016/j.rser.2008.09.033
[21] Zhang, Y., Chen, W., Gao, W.:
A survey on the development status and challenges of smart grids in main driver countries. Renewable Sustainable Energy Rev. 79 (2017), 137-147.
DOI 10.1016/j.rser.2017.05.032