Previous |  Up |  Next

Article

Keywords:
appliance modeling; bottom-up; Markov chain; semi-Markov process; smart grid
Summary:
In our paper we investigate the applicability of independent and identically distributed random sequences, first order Markov and higher order Markov chains as well as semi-Markov processes for bottom-up electricity load modeling. We use appliance time series from publicly available data sets containing fine grained power measurements. The comparison of models are based on metrics which are supposed to be important in power systems like Load Factor, Loss of Load Probability. Furthermore, we characterize the interdependence structure of the models with autocorrelation function as well. The aim of the investigation is to choose the most appropriate and the most parsimonious models for Smart Grid simulation purposes and applications like Demand Side Management and load scheduling. According to our results most appliance types can be modeled adequately with two states (on/off model) and the semi-Markov process can reproduce the properties of an aggregate load well compared to the original time series. With the price of more parameters of the semi-Markov model compared to identically distributed random sequence and first order Markov chain, it gives better results when the autocorrelation function, Loss of Load Probability and Load Factor are considered.
References:
[1] Ardakanian, O., Keshav, S., Rosenberg, C.: Markovian models for home electricity consumption. In: Proc. 2nd ACM SIGCOMM Workshop on Green Betworking - GreenNets'11, 2011. DOI 10.1145/2018536.2018544
[2] Aydinalp, M., Ugursal, V. I., Fung, A. S.: Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks. Applied Energy 71 (2002), 87-110. DOI 10.1016/s0306-2619(01)00049-6
[3] Berchtold, A., Raftery, A.: The mixture transition distribution model for high-order Markov chains and non-Gaussian time series. Statist. Sci. 17 (2002), 328-356. DOI 10.1214/ss/1042727943 | MR 1962488
[4] Dickert, J., Schegner, P.: Residential load models for network planning purposes. In: Proc. Modern Electric Power Systems 2010, Wroclaw, pp. 1-6.
[5] Drenyovszki, R., Kovacs, L., Pinter, I., Olah, A., Tornai, K., Levendovszky, J.: Power system reliability assessment for the residential sector based on Large Deviation Theory bounds. In: Proc. EnergyCon 2016, IEEE International Energy Conference, Leuven 2016. DOI 10.1109/energycon.2016.7514106
[6] Grandjean, A., Adnot, J., Binet, G.: A review and an analysis of the residential electric load curve models. Renewable and Sustainable Energy Reviews 16 (2012), 9, 6539-6565. DOI 10.1016/j.rser.2012.08.013
[7] Kavgic, M., Mavrogianni, A., Mumovic, D., Summerfield, A., Stevanovic, Z., Djurovic-Petrovic, M.: A review of bottom-up building stock models for energy consumption in the residential sector. Building and Environment 45 (2010), 1683-1697. DOI 10.1016/j.buildenv.2010.01.021
[8] Kolter, J. Z., Johnson, M. J.: REDD: A public data set for energy disaggregation research. In: Proc. SustKDD Workshop on Data Mining Applications in Sustainability, 2011.
[9] Kong, W., Dong, Z. Y., Hill, D. J.: A hierarchical hidden Markov model framework for home appliance modelling. IEEE Trans. Smart Grid PP (2016), 99, 1-1. DOI 10.1109/tsg.2016.2626389
[10] Kovacs, L., Drenyovszki, R., Olah, A., Levendovszky, J., Tornai, K., Pinter, I.: A probabilistic demand side management approach by consumption admission control. Tehnicki Vjesnik - Tehnical Gazette 24 (2017), 1, 199-207. DOI 10.17559/tv-20151021201400
[11] Monacchi, A., Egarter, D., Elmenreich, W., D'Alessandro, S., Tonello, A. M.: GREEND: An energy consumption dataset of households in Italy and Austria. In: Proc. 5th IEEE International Conference on Smart Grid Communications (SmartGridComm 14), Venice 2014. DOI 10.1109/smartgridcomm.2014.7007698
[12] Nijhuis, M., Gibescu, M., Cobben, J. F. G.: Bottom-up Markov Chain Monte Carlo approach for scenario based residential load modelling with publicly available data. Energy and Buildings 112 (2016), 121-129. DOI 10.1016/j.enbuild.2015.12.004
[13] Paatero, J., Lund, P.: A model for generating household electricity load profiles. Int. J. Energy Research 30 (2006), 273-290. DOI 10.1002/er.1136
[14] Palacio, S. N., Valentine, K. F., Wong, M., Zhang, K. M.: Reducing power system costs with thermal energy storage. Appl. Energy 129 (2014), 228-237. DOI 10.1016/j.apenergy.2014.04.089
[15] Sancho-Tomas, A., Sumner, M., Robinson, D.: A generalised model of electrical energy demand from small household appliances. Energy and Buildings 135 (2017), 350-366. DOI 10.1016/j.enbuild.2016.10.044
[16] Schne, T., Jasko, Sz., Simon, Gy.: Dynamic models of a home refrigerator. In: Proc. 5th International Conference on Recent Achievements in Mechatronics, Automation, Computer Sciences and Robotics (MACRo 2015), pp. 103-112.
[17] Sossan, F., Lakshmanan, V., Costanzo, G. T., Marinelli, M., Douglass, P. J., Bindner, H.: Grey-box modelling of a household refrigeration unit using time series data in application to demand side management. Sustainable Energy, Grids and Networks 5 (2016), 1-12. DOI 10.1016/j.segan.2015.10.003
[18] Stephen, B., Galloway, S., Burt, G.: Self-learning load characteristic models for smart appliances. IEEE Trans. Smart Grid 5 (2014), 5, 2432-2439. DOI 10.1109/tsg.2014.2318375
[19] Strbac, G.: Demand side management: Benefits and challenges. Energy Policy 36 (2008), 4419-4426. DOI 10.1016/j.enpol.2008.09.030
[20] Swan, L. G., Ugursal, V. Ismet: Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. Renewable Sustainable Energy Rev. 13 (2009), 1819-1835. DOI 10.1016/j.rser.2008.09.033
[21] Zhang, Y., Chen, W., Gao, W.: A survey on the development status and challenges of smart grids in main driver countries. Renewable Sustainable Energy Rev. 79 (2017), 137-147. DOI 10.1016/j.rser.2017.05.032
Partner of
EuDML logo