Previous |  Up |  Next

Article

Keywords:
robotic snake; local control; nilpotent approximation
Summary:
We construct a privileged system of coordinates with respect to the controlling distribution of a trident snake robot and, furthermore, we construct a nilpotent approximation with respect to the given filtration. Note that all constructions are local in the neighbourhood of a particular point. We compare the motions corresponding to the Lie bracket of the original controlling vector fields and their nilpotent approximation.
References:
[1] Bao-Li, Ma: Local exponential regulation of nonholonomic systems in approximate chained form with applications to off-axle tractor-trailers. J. Robotics 2007 (2007), 1-8. DOI 10.1155/2011/697309
[2] Cai, Q., Huang, T., Sachkov, Y. L., Yang, X.: Geodesics in the Engel group with a sub-Lorentzian metric. J. Dynamical Control Systems 22 (2016), 465-483. DOI 10.1007/s10883-015-9295-2 | MR 3517612
[3] Hermes, H.: Nilpotent approximations of control systems and distributions. Siam J. Control Optim. 24 (1986), 731-736. DOI 10.1137/0324045 | MR 0846379
[4] J.Hrdina: Local controllability of trident snake robot based on sub-Riemannian extremals. Note di Matematica 37 (2017), 93-102. MR 3660496
[5] Hrdina, J., Návrat, A., Vašík, P., Matoušek, R.: Geometric Control of the Trident Snake Robot Based on CGA. Adv. Appl. Clifford Algebr. 27 (2017), 633-645. DOI 10.1007/s00006-016-0693-7 | MR 3619388
[6] Hrdina, J., Návrat, A., Vašík, P., Matoušek, R.: CGA-based robotic snake control. Adv. Appl. Clifford Algebr. 27 (2017), 633-645. DOI 10.1007/s00006-016-0693-7 | MR 3619387
[7] Ishikawa, M.: Trident snake robot: Locomotion analysis and control. In: Proc. IFAC NOLCOS, IFAC Nonlinear Control Systems, Stuttgart 2004, pp. 1169-1174. DOI 10.1016/s1474-6670(17)31339-3
[8] Ishikawa, M., Fukiro, T.: Control of the double-linked trident snake robot based on the analysis of its oscillatory dynamics. In: Proc. IEEE/RSJ IROS 2009, pp. 1314-1319. DOI 10.1109/iros.2009.5354831
[9] Ishikawa, M., Minami, Y., Sugie, T.: Development and control experiment of the trident snake robot. IEEE/ASME Trans. Mechatron. 15 (2010), 9-16. DOI 10.1109/tmech.2008.2011985
[10] Jakubiak, J., Tchon, K., Janiak, M.: Motion planning of the trident snake robot: an endogenous configuration space approach. In: ROMANSY 18 Robot Design, Dynamics and Control: Proc. Eighteenth CISM-IFToMM Symposium (V. P. Castelli and W. Schiehlen, eds.), Springer, Vienna 2010, pp. 159-166. DOI 10.1007/978-3-7091-0277-0_18 | MR 3236885
[11] Jarzebowska, E.: Stabilizability and motion tracking conditions for mechanical nonholonomic control systems. Math. Problems Engrg. 2007 (2007), 1-20. DOI 10.1155/2007/31267 | MR 2417212
[12] Jean, F.: Control of Nonholonomic Systems: From Sub-Riemannian Geometry to Motion Planning. Springer International Publishing, New York 2014. DOI 10.1007/978-3-319-08690-3 | MR 3308372
[13] Liljebäck, P., Pettersen, K. Y., Stavdahl, Ø., Gravdahl, J. T.: Snake Robots, Modelling, Mechatronics and Control. Springer-Verlag, London 2013. DOI 10.1007/978-1-4471-2996-7
[14] Meiying, O., Shengwei, G., Xianbing, W., Kexiu, D.: Finite-time tracking control of multiple nonholonomic mobile robots with external disturbances. Kybernetika 51 (2015), 1049-1067. DOI 10.14736/kyb-2015-6-1049 | MR 3453685
[15] Murray, R. M., Zexiang, L., Sastry, S. S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton 1994. MR 1300410
[16] Návrat, A., Matoušek, R.: Trident snake control based on CGA. Mendel 2015: Recent Advances in Computer Science 378 (2015), 375-385. DOI 10.1007/978-3-319-19824-8_31
[17] Návrat, A., Vašík, P: On geometric control models of a robotic snake. Note di Matematica 37 (2017), 119-129. MR 3660498
[18] Pietrowska, Z., Tchon, K.: Dynamics and motion planning of trident snake robot. J. Intelligent Robotic Systems 75 (2014), 17-28. DOI 10.1007/s10846-013-9858-y
[19] Selig, J. M.: Geometric Fundamentals of Robotics. Second edition. Springer, New York 2004. DOI 10.1017/s0263574706262805 | MR 2250553
[20] Transeth, A. A., Pettersen, K. Y., Liljebäck, P.: A survey on snake robot modeling and locomotion. Robotica 27 (2009), 999-1015. DOI 10.1017/s0263574709005414
[21] Venditelli, M., Oriolo, G., Jean, F., Laumond, J. P.: Nonhomogeneous nilpotent approximations for nonholonomic systems with singularities. IEEE Trans. Automat. Control 49 (2004), 261-266. DOI 10.1109/tac.2003.822872 | MR 2034349
Partner of
EuDML logo