[2] Gantmakher, F. R.:
The Theory of Matrices. Chelsea, London 1959.
MR 0107649
[3] Jaquette, S. C.:
Markov decision processes with a new optimality criterion: Discrete time. Ann. Statist. 1 (1973), 496-505.
DOI |
MR 0378839
[5] Markowitz, H.:
Portfolio Selection - Efficient Diversification of Investments. Wiley, New York 1959.
MR 0103768
[6] Puterman, M. L.:
Markov Decision Processes - Discrete Stochastic Dynamic Programming. Wiley, New York 1994.
MR 1270015
[7] Bäuerle, N., Rieder, U.:
Markov Decision Processes with Application to Finance. Springer-Verlag, Berlin 2011.
MR 2808878
[8] Righter, R.:
Stochastic comparison of discounted rewards. J. Appl. Probab. 48 (2011), 293-294.
DOI |
MR 2809902
[9] Sladký, K.:
On mean reward variance in semi-Markov processes. Math. Meth. Oper. Res. 62 (2005), 387-397.
DOI |
MR 2229697
[10] Sladký, K.: Risk-sensitive and mean variance optimality in Markov decision processes. Acta Oeconomica Pragensia 7 (2013), 146-161.
[11] Sladký, K.: Second order optimality in transient and discounted Markov decision chains. In: Proc. 33th Internat. Conf. Math. Methods in Economics MME 2015 (D. Martinčík, ed.), University of West Bohemia, Plzeň 2015, pp. 731-736.
[12] Sobel, M.:
The variance of discounted Markov decision processes. J. Appl. Probab. 19 (1982), 794-802.
DOI |
MR 0675143 |
Zbl 0503.90091
[13] Dijk, N. M. Van, Sladký, K.:
On the total reward variance for continuous-time Markov reward chains. J. Appl. Probab. 43 (2006), 1044-1052.
DOI |
MR 2274635
[14] Veinott, A. F., Jr:
Discrete dynamic programming with sensitive discount optimality criteria. Ann. Math. Statist. 13 (1969), 1635-1660.
DOI |
MR 0256712
[15] White, D. J.:
Mean, variance and probability criteria in finite Markov decision processes: A review. J. Optimizat. Th. Appl. 56 (1988), 1-29.
DOI |
MR 0922375
[16] Wu, X., Guo, X.:
First passage optimality and variance minimisation of Markov decision processes with varying discount factors. J. Appl. Probab. 52 (2015), 441-456.
DOI |
MR 3372085 |
Zbl 1327.90374