Previous |  Up |  Next

Article

Keywords:
Riemannian structures; sub-Riemannian structures; three-dimensional Lie groups
Summary:
We investigate the isometry groups of the left-invariant Riemannian and sub-Riemannian structures on simply connected three-dimensional Lie groups. More specifically, we determine the isometry group for each normalized structure and hence characterize for exactly which structures (and groups) the isotropy subgroup of the identity is contained in the group of automorphisms of the Lie group. It turns out (in both the Riemannian and sub-Riemannian cases) that for most structures any isometry is the composition of a left translation and a Lie group automorphism.
References:
[1] Agrachev, A., Barilari, D.: Sub-Riemannian structures on 3D Lie groups. J. Dyn. Control Syst., 18, 1, 2012, 21-44, DOI 10.1007/s10883-012-9133-8 | MR 2902707 | Zbl 1244.53039
[2] Alekseevskiĭ, D.V.: The conjugacy of polar decompositions of Lie groups. Mat. Sb. (N.S.), 84, 126, 1971, 14-26, MR 0277662
[3] Alekseevskiĭ, D.V.: Homogeneous Riemannian spaces of negative curvature. Mat. Sb. (N.S.), 138, 1, 1975, 93-117, MR 0362145
[4] Bellaïche, A.: The tangent space in sub-Riemannian geometry. A. Bellaïche, J.J. Risler (eds.), Sub-Riemannian geometry, 1996, 1-78, Birkhäuser, Basel, MR 1421822 | Zbl 0862.53031
[5] Biggs, R., Nagy, P. T.: On Sub-Riemannian and Riemannian structures on the Heisenberg groups. J. Dyn. Control Syst., 22, 3, 2016, 563-594, DOI 10.1007/s10883-016-9316-9 | MR 3517618 | Zbl 1347.53029
[6] Biggs, R., Remsing, C.C.: On the classification of real four-dimensional Lie groups. J. Lie Theory, 26, 4, 2016, 1001-1035, MR 3487553 | Zbl 1356.22008
[7] Biggs, R., Remsing, C.C.: Quadratic Hamilton--Poisson systems in three dimensions: equivalence, stability, and integration. Acta Appl. Math., 148, 2017, 1-59, DOI 10.1007/s10440-016-0074-1 | MR 3621290
[8] Biggs, R., Remsing, C.C.: Invariant control systems on Lie groups. G. Falcone (ed.), Lie groups, differential equations, and geometry: advances and surveys, 2017, 127-181, Springer, MR 3726533
[9] Capogna, L., Donne, E. Le: Smoothness of subRiemannian isometries. Amer. J. Math., 138, 5, 2016, 1439-1454, DOI 10.1353/ajm.2016.0043 | MR 3553396 | Zbl 1370.53030
[10] Gordon, C.: Riemannian isometry groups containing transitive reductive subgroups. Math. Ann., 248, 2, 1980, 185-192, DOI 10.1007/BF01421956 | MR 0573347 | Zbl 0412.53026
[11] Gordon, C.S., Wilson, E.N.: Isometry groups of Riemannian solvmanifolds. Trans. Amer. Math. Soc., 307, 1, 1988, 245-269, DOI 10.1090/S0002-9947-1988-0936815-X | MR 0936815 | Zbl 0664.53022
[12] Ha, K.Y., Lee, J.B.: Left invariant metrics and curvatures on simply connected three-dimensional Lie groups. Math. Nachr., 282, 6, 2009, 868-898, DOI 10.1002/mana.200610777 | MR 2530885 | Zbl 1172.22006
[13] Ha, K.Y., Lee, J.B.: The isometry groups of simply connected 3-dimensional unimodular Lie groups. J. Geom. Phys., 62, 2, 2012, 189-203, DOI 10.1016/j.geomphys.2011.10.011 | MR 2864471 | Zbl 1247.22012
[14] Hamenst{ä}dt, U.: Some regularity theorems for Carnot-Carathéodory metrics. J. Differential Geom., 32, 3, 1990, 819-850, DOI 10.4310/jdg/1214445536 | MR 1078163 | Zbl 0687.53041
[15] Jurdjevic, V.: Geometric control theory. 1997, Cambridge University Press, Cambridge, MR 1425878 | Zbl 0940.93005
[16] Kishimoto, I.: Geodesics and isometries of Carnot groups. J. Math. Kyoto Univ., 43, 3, 2003, 509-522, DOI 10.1215/kjm/1250283693 | MR 2028665 | Zbl 1060.53039
[17] Kivioja, V., Donne, E. Le: Isometries of nilpotent metric groups. J. Éc. Polytech. Math., 4, 2017, 473-482, DOI 10.5802/jep.48 | MR 3646026 | Zbl 1369.22006
[18] Krasiński, A., Behr, C.G., Schücking, E., Estabrook, F.B., Wahlquist, H.D., Ellis, G.F.R., Jantzen, R., Kundt, W.: The Bianchi classification in the Schücking-{B}ehr approach. Gen. Relativity Gravitation, 35, 3, 2003, 475-489, DOI 10.1023/A:1022382202778 | MR 1964375 | Zbl 1016.83004
[19] Donne, E. Le, Ottazzi, A.: Isometries of Carnot groups and sub-Finsler homogeneous manifolds. J. Geom. Anal., 26, 1, 2016, 330-345, DOI 10.1007/s12220-014-9552-8 | MR 3441517 | Zbl 1343.53029
[20] Milnor, J.: Curvatures of left invariant metrics on Lie groups. Advances in Math., 21, 3, 1976, 293-329, MR 0425012 | Zbl 0341.53030
[21] Montgomery, R.: A tour of subriemannian geometries, their geodesics and applications. 2002, American Mathematical Society, Providence, RI, MR 1867362 | Zbl 1044.53022
[22] Mubarakzyanov, G.M.: On solvable Lie algebras. Izv. Vysš. Učehn. Zaved. Matematika, 1963, 114-123, In Russian. MR 0153714 | Zbl 0166.04104
[23] Patrangenaru, V.: Classifying 3- and 4-dimensional homogeneous Riemannian manifolds by Cartan triples. Pacific J. Math., 173, 2, 1996, 511-532, DOI 10.2140/pjm.1996.173.511 | MR 1394403 | Zbl 0866.53035
[24] Petersen, P.: Riemannian geometry. 2006, Springer, New York, 2nd ed.. MR 2243772 | Zbl 1220.53002
[25] Shin, J.: Isometry groups of unimodular simply connected 3-dimensional Lie groups. Geom. Dedicata, 65, 3, 1997, 267-290, DOI 10.1023/A:1004957320982 | MR 1451979 | Zbl 0909.53036
[26] {Š}nobl, L., Winternitz, P.: Classification and identification of Lie algebras. 2014, American Mathematical Society, Providence, RI, MR 3184730 | Zbl 1331.17001
[27] Strichartz, R.S.: Sub-Riemannian geometry. J. Differential Geom., 24, 2, 1986, 221-263, DOI 10.4310/jdg/1214440436 | MR 0862049 | Zbl 0609.53021
[28] Vershik, A.M., Gershkovich, V.Y.: Nonholonomic dynamical systems, geometry of distributions and variational problems. V.I. Arnol'd, S.P. Novikov (eds.), Dynamical systems VII, 1994, pp. 1-81, Springer, Berlin, MR 0922070
[29] Wilson, E.N.: Isometry groups on homogeneous nilmanifolds. Geom. Dedicata, 12, 3, 1982, 337-346, DOI 10.1007/BF00147318 | MR 0661539 | Zbl 0489.53045
Partner of
EuDML logo