Previous |  Up |  Next

Article

Keywords:
Oscillation; periodicity; piecewise continuous argument; impulsive differential equations.
Summary:
This paper concerns with the existence of the solutions of a second order impulsive delay differential equation with a piecewise constant argument. Moreover, oscillation, nonoscillation and periodicity of the solutions are investigated.
References:
[1] Akhmet, M.: Nonlinear hybrid continuous/discrete-time models. 2011, Springer Science & Business Media. MR 2883822 | Zbl 1328.93001
[2] Bereketoglu, H., Oztepe, G.S.: Convergence of the solution of an impulsive differential equation with piecewise constant arguments. Miskolc Math. Notes, 14, 2013, 801-815, DOI 10.18514/MMN.2013.595 | MR 3153966 | Zbl 1299.34247
[3] Bereketoglu, H., Oztepe, G.S.: Asymptotic constancy for impulsive differential equations with piecewise constant argument. Bull. Math. Soc. Sci. Math. Roumanie Tome, 57, 2014, 181-192, MR 3236647
[4] Bereketoglu, H., Seyhan, G., Ogun, A.: Advanced impulsive differential equations with piecewise constant arguments. Math. Model. Anal, 15, 2, 2010, 175-187, DOI 10.3846/1392-6292.2010.15.175-187 | MR 2604207 | Zbl 1218.34095
[5] Bereketoglu, H., Seyhan, G., Karakoc, F.: On a second order differential equation with piecewise constant mixed arguments. Carpath. J. Math, 27, 1, 2011, 1-12, MR 2848121 | Zbl 1265.34272
[6] Busenberg, S., Cooke, K.: Vertically Transmitted Diseases, Models and Dynamics. Biomathematics, 23, 1993, Springer, Berlin, MR 1206227 | Zbl 0837.92021
[7] Chen, C.H., Li, H.X.: Almost automorphy for bounded solutions to second-order neutral differential equations with piecewise constant arguments. Elect. J. Diff. Eq., 140, 2013, 1-16, MR 3084620 | Zbl 1292.34076
[8] Gouzé, J.L., Sari, T.: A class of piecewise linear differential equations arising in biological models. Dynamic. Syst., 17, 4, 2002, 299-316, DOI 10.1080/1468936021000041681 | MR 1975116 | Zbl 1054.34013
[9] Karakoc, F., Bereketoglu, H., Seyhan, G.: Oscillatory and periodic solutions of impulsive differential equations with piecewise constant argument. Acta Appl. Math., 110, 1, 2010, 499-510, DOI 10.1007/s10440-009-9458-9 | MR 2601669 | Zbl 1196.34104
[10] Küpper, T., Yuan, R.: On quasi-periodic solutions of differential equations with piecewise constant argument. J. Math. Anal. Appl., 267, 1, 2002, 173-193, DOI 10.1006/jmaa.2001.7761 | MR 1886823 | Zbl 1008.34063
[11] Li, J., Shen, J.: Periodic boundary value problems of impulsive differential equations with piecewise constant argument. J. Nat. Sci. Hunan Norm. Univ., 25, 2002, 5-9, MR 1939990 | Zbl 1047.34076
[12] Li, H.X.: Almost periodic solutions of second-order neutral delay -- differential equations with piecewise constant arguments. J. Math. Anal. Appl., 298, 2, 2004, 693-709, DOI 10.1016/j.jmaa.2004.05.034 | MR 2086984 | Zbl 1064.34056
[13] Nieto, J.J., Lopez, R.R.: Green's function for second-order periodic boundary value problems with piecewise constant arguments. J. Math. Anal. Appl., 304, 1, 2005, 33-57, DOI 10.1016/j.jmaa.2004.09.023 | MR 2124647 | Zbl 1078.34046
[14] Oztepe, G.S., Bereketoglu, H.: Convergence in an impulsive advanced differential equations with piecewise constant argument. Bull. Math. Anal. Appl., 4, 2012, 57-70, MR 2989710 | Zbl 1314.34150
[15] Seifert, G.: Second order scalar functional differential equations with piecewise constant arguments. J. Difference Equ. Appl., 8, 5, 2002, 427-445, MR 1897067 | Zbl 1010.34069
[16] Wang, G.Q., Cheng, S.S.: Existence of periodic solutions for second order Rayleigh equations with piecewise constant argument. Turkish J. Math., 30, 1, 2006, 57-74, MR 2215507 | Zbl 1103.34064
[17] Wiener, J.: Generalized solutions of functional differential equations. 1993, Singapore, World Scientific, Zbl 0874.34054
[18] Wiener, J., Lakshmikantham, V.: Excitability of a second-order delay differential equation. Nonlinear Anal., 38, 1, 1999, 1-11, DOI 10.1016/S0362-546X(98)00245-4 | MR 1692949 | Zbl 0945.34048
[19] Wiener, J., Lakshmikantham, V.: Differential equations with piecewise constant argument and impulsive equations. Nonlinear Studies, 7, 1, 2000, 60-69, MR 1856579 | Zbl 0997.34076
[20] Yuan, R.: Pseudo-almost periodic solutions of second-order neutral delay differential equations with piecewise constant argument. Nonlinear Anal., 41, 7, 2000, 871-890, DOI 10.1016/S0362-546X(98)00316-2 | MR 1764025 | Zbl 1024.34068
Partner of
EuDML logo