Previous |  Up |  Next

Article

Keywords:
limit theorem; U-statistics; random fields
Summary:
The aim of this paper is to introduce a central limit theorem and an invariance principle for weighted U-statistics based on stationary random fields. Hsing and Wu (2004) in their paper introduced some asymptotic results for weighted U-statistics based on stationary processes. We show that it is possible also to extend their results for weighted $U$-statistics based on stationary random fields.
References:
[1] Bickel, P. J., Wichura, M. J.: Convergence criteria for multiparameter stochastic processes and some applications. Ann. Math. Statist. 42 (1971), 5, 1656-1670. DOI 10.1214/aoms/1177693164 | MR 0383482 | Zbl 0265.60011
[2] Bolthausen, E.: On the central limit theorem for stationary mixing random fields. Ann. Probab. 10 (1982), 4, 1047-1050. DOI 10.1214/aop/1176993726 | MR 0672305 | Zbl 0496.60020
[3] Borovkova, S., Burton, R., Dehling, H.: Limit theorems for functionals of mixing processes with applications to U-statistics and dimension estimation. Trans. Amer. Math. Soc. 353) (2001), 11, 4261-4318. DOI 10.1090/s0002-9947-01-02819-7 | MR 1851171 | Zbl 0980.60031
[4] Denker, M., Gordin, M.: Limit theorems for von Mises statistics of a measure preserving transformation. Probab. Theory Related Fields, \mi{160} (2014), 1-2, 1-45. DOI 10.1007/s00440-013-0522-z | MR 3256808 | Zbl 1306.60007
[5] Denker, M., Keller, G.: On U-statistics and von Mises statistics for weakly dependent processes. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 64 (1983), 4, 505-522. DOI 10.1007/bf00534953 | MR 0717756 | Zbl 0519.60028
[6] Dewan, I., Rao, B. P.: Asymptotic normality for U-statistics of associated random variables. J. Statist. Planning Inference 97 (2001), 2, 201-225. DOI 10.1016/s0378-3758(00)00226-3 | MR 1861150 | Zbl 1026.60502
[7] Machkouri, M. El, Volný, D., Wu, W. B.: A central limit theorem for stationary random fields. Stochast. Processes Appl. 123 (2013), 1, 1-14. DOI 10.1016/j.spa.2012.08.014 | MR 2988107 | Zbl 1308.60025
[8] Heinrich, L.: Asymptotic behaviour of an empirical nearest neighbour distance function for stationary Poisson cluster processes. Math. Nachrichten 136 (1988), 1, 131-148. DOI 10.1002/mana.19881360109 | MR 0952468 | Zbl 0653.60041
[9] Hoeffding, W.: A class of statistics with asymptotically normal distribution. Ann. Math. Statist. 19 (1948), 3, 293-325. DOI 10.1214/aoms/1177730196 | MR 0026294 | Zbl 0032.04101
[10] Hsing, T., Wu, W. B.: On Weighted U-statistics for stationary processes. Ann. Probab. 32 (2004), 2, 1600-1631. DOI 10.1214/009117904000000333 | MR 2060311 | Zbl 1049.62099
[11] Khoshnevisan, D.: Multiparameter Processes: An Introduction to Random Fields. Springer, 2002. MR 1914748 | Zbl 1005.60005
[12] Koroljuk, V. S., Borovskich, Y. V.: Theory of $U $-statistics. Springer, 1994. MR 1472486
[13] Lee, J.: U-statistics. Theory and Practice. Academic Press, 1990. Zbl 0771.62001
[14] Leucht, A., Neumann, M. H.: Degenerate U-and V-statistics under ergodicity: Asymptotics, bootstrap and applications in statistics. Ann. Inst. of Statist. Math. 65 (2013), 2, 349-386. DOI 10.1007/s10463-012-0374-9 | MR 3011626
[15] Volný, D., Wang, Y.: An invariance principle for stationary random fields under Hannan's condition. Stoch. Process. Appl. 124 (12) (2014), 12, 4012-4029. DOI 10.1016/j.spa.2014.07.015 | MR 3264437 | Zbl 1312.60031
[16] Wang, Y., Woodroofe, M.: A new condition on invariance principles for stationary random fields. Statist. Sinica 23 (2013), 4, 1673-1696. DOI 10.5705/ss.2012.114s | MR 3222815
Partner of
EuDML logo