Previous |  Up |  Next

Article

Keywords:
subcopula; dependence; concordance
Summary:
A dependence measure for arbitrary type pairs of random variables is proposed and analyzed, which in the particular case where both random variables are continuous turns out to be a concordance measure. Also, a sample version of the proposed dependence measure based on the empirical subcopula is provided, along with an R package to perform the corresponding calculations.
References:
[1] Cifarelli, D. M., Conti, P. L., Regazzini, E.: On the asymptotic distribution of a general measure of monotone dependence. Ann. Statist. 24 (1996), 1386-1399. DOI 10.1214/aos/1032526975 | MR 1401856 | Zbl 0862.62014
[2] Denuit, M., Lambert, P.: Constraints on concordance measures in bivariate discrete data. J. Mult. Anal. 93 (2005), 40-57. DOI 10.1016/j.jmva.2004.01.004 | MR 2119763 | Zbl 1095.62065
[3] Durante, F., Sempi, C.: Principles of Copula Theory. CRC Press, Boca Raton 2016. DOI 10.1201/b18674 | MR 3443023
[4] Erdely, A.: subcopem2D: Bivariate Empirical Copula. R package version 1.2 (2017), URL DOI 
[5] Genest, C., Nešlehová, J.: A primer on copulas for count data. Astin Bull. 37 (2007), 475-515. DOI 10.2143/ast.37.2.2024077 | MR 2422797 | Zbl 1274.62398
[6] Genest, C., Nešlehová, J., Rémillard, B.: On the empirical multilinear copula process for count data. Bernoulli 20 (2014), 1344-1371. DOI 10.3150/13-bej524 | MR 3217446
[7] Hofert, M., Kojadinovic, I., Maechler, M., Yan, J.: copula: Multivariate Dependence with Copulas. R package version 0.999-16 (2017), URL DOI 
[8] Lehmann, E. L.: Some concepts of dependence. Ann. Math. Statist. 37 (1966), 1137-1153. DOI 10.1214/aoms/1177699260 | MR 0202228 | Zbl 0146.40601
[9] Li, X., Mikusiński, P., Sherwood, H., Taylor, M. D: On approximation of copulas. In: Distributions with given marginals and moment problems (V. Beneš and J. Štěpán, eds.), Kluwer, Dordrecht 1997, pp. 107-116. DOI 10.1007/978-94-011-5532-8_13 | MR 1614663 | Zbl 0905.60015
[10] Nelsen, R. B.: An Introduction to Copulas. Springer, New York 2006. DOI 10.1007/0-387-28678-0 | MR 2197664 | Zbl 1152.62030
[11] Nešlehová, J.: On rank correlation measures for non-continuous random variables. J. Mult. Anal. 98 (2007), 544-567. DOI 10.1016/j.jmva.2005.11.007 | MR 2293014 | Zbl 1107.62047
[12] Team, R Core: R: A language and environment for statistical computing. R Foundation for Statistical Computing (Vienna), URL DOI 
[13] Scarsini, M.: On measures of concordance. Stochastica 8 (1984), 201-218. MR 0796650 | Zbl 0582.62047
[14] Schweizer, B., Wolff, E. F.: On nonparametric measures of dependence for random variables. Ann. Statist. 9 (1981), 879-885. DOI 10.1214/aos/1176345528 | MR 0619291 | Zbl 0468.62012
[15] Sklar, A.: Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229-231. MR 0125600
Partner of
EuDML logo