Previous |  Up |  Next

Article

Keywords:
argmin-theorem; density estimation; step functions; martingale inequalities; multivariate cadlag stochastic processes
Summary:
We establish consistent estimators of jump positions and jump altitudes of a multi-level step function that is the best $L^2$-approximation of a probability density function $f$. If $f$ itself is a step-function the number of jumps may be unknown.
References:
[1] Billingsley, P.: Convergence of Probability Measures. Second Edition. John Wiley and Sons, Inc., New York 1999. DOI 10.1002/9780470316962 | MR 1700749
[2] Birnbaum, Z., Marshall, A.: Some multivariate Chebyshev inequalities with extensions to continuous parameter processes. Ann. Math. Statist. 32 (1961), 687-703. DOI 10.1214/aoms/1177704964 | MR 0148106
[3] Chu, C. K., Cheng, P. E.: Estimation of jump points and jump values of a density function. Statist. Sinica 6 (1996), 79-95. MR 1379050 | Zbl 0839.62039
[4] Dudley, R. .M.: Uniform Central Limit Theorems. Cambridge University Press, New York 1999. DOI 10.1017/cbo9780511665622 | MR 1720712 | Zbl 1317.60030
[5] Ferger, D.: Minimum distance estimation in normed linear spaces with Donsker-classes. Math. Methods Statist. 19 (2010), 246-266. DOI 10.3103/s1066530710030038 | MR 2742928 | Zbl 1282.60029
[6] Ferger, D.: Arginf-sets of multivariate cadlag processes and their convergence in hyperspace topologies. Theory Stoch. Process. 20 (2015), 36, 13-41. MR 3510226
[7] Gaenssler, P., Stute, W.: Wahrscheinlichkeitstheorie. Springer-Verlag, Berlin, Heidelberg, New York 1977. MR 0501219 | Zbl 0357.60001
[8] Kanazawa, Y.: An optimal variable cell histogram. Comm. Statist. Theory Methods 17 (1988), 1401-1422. DOI 10.1080/03610928808829688 | MR 0945798 | Zbl 0939.62508
[9] Kanazawa, Y.: An optimal variable cell histogram based on the sample spacings. Ann. Statist. 20 (1992), 291-304. DOI 10.1214/aos/1176348523 | MR 1150345 | Zbl 0745.62034
[10] Koul, H. L.: Weighted Empirical Processes in Dynamic Nonlinear Models. Second Edition. Springer-Verlag, New York 2002. DOI 10.1007/978-1-4613-0055-7 | MR 1911855
[11] Massart, P.: The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab. 18 (1990), 1269-1283. DOI 10.1214/aop/1176990746 | MR 1062069 | Zbl 0713.62021
[12] Rockefellar, R. T., Wets, R. J.-B.: Variational Analysis. Springer-Verlag, Berlin, Heidelberg 1998.
[13] Shorack, G. R., Wellner, J. A.: Empirical Processes With Applications to Statistics. John Wiley and Sons, New York, Chichester, Brisbane, Toronto, Singapore 1986. MR 0838963 | Zbl 1171.62057
Partner of
EuDML logo