Article
Keywords:
strong law of large numbers; convex combination space; pairwise $m$-dependent; blockwise $m$-dependent; compactly uniformly integrable
Summary:
The aim of the paper is to establish strong laws of large numbers for sequences of blockwise and pairwise $m$-dependent random variables in a convex combination space with or without compactly uniformly integrable condition. Some of our results are even new in the case of real random variables.
References:
[2] Choi, B. D., Sung, S. H.:
On convergence of $(S_n -ES_n)/n^{1/r}$, $1. Bull. Korean Math. Soc. 22 (1985), 79-82. MR 0826361
[4] Gaposhkin, V. F.:
On the strong law of large numbers for blockwise independent and blockwise orthogonal random variables. Theory Probab. Appl. 39 677-684 (1994), translation from Teor. Veroyatn. Primen. Russian 39 804-812 (1994).
DOI 10.1137/1139053 |
MR 1347654 |
Zbl 0847.60022
[5] Móricz, F.:
Strong limit theorems for blockwise $m$-dependent and blockwise quasi-orthogonal sequences of random variables. Proc. Am. Math. Soc. 101 (1987), 709-715.
DOI 10.2307/2046676 |
MR 0911038
[8] Thanh, L. V.:
Strong laws of large numbers for sequences of blockwise and pairwise $m$-dependent random variables. Bull. Inst. Math., Acad. Sin. 33 (2005), 397-405.
MR 2184437 |
Zbl 1084.60506
[9] Thuan, N. T., Quang, N. V., Nguyen, P. T.:
Complete convergence for arrays of rowwise independent random variables and fuzzy random variables in convex combination spaces. Fuzzy Sets Syst. 250 (2014), 52-68.
MR 3223442 |
Zbl 1334.60041