[1] Allen, S. M., Cahn, J. W.:
A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979), 1085-1095.
DOI 10.1016/0001-6160(79)90196-2
[2] Babin, A. V., Vishik, M. I.:
Attractors of Evolution Equations. Studies in Mathematics and Its Applications 25 North-Holland, Amsterdam (1992).
MR 1156492 |
Zbl 0778.58002
[3] Bai, F., Elliott, C. M., Gardiner, A., Spence, A., Stuart, A. M.:
The viscous Cahn-Hilliard equation. I: Computations. Nonlinearity 8 131-160 (1995).
MR 1328591 |
Zbl 0818.35045
[6] Cahn, J. W., Hilliard, J. E.:
Free energy of a non-uniform system I: Interfacial free energy. J. Chem. Phys. 28 (1958), 258-267.
DOI 10.1063/1.1744102
[7] Chen, F., Shen, J.:
Efficient energy stable schemes with spectral discretization in space for anisotropic Cahn-Hilliard systems. Commun. Comput. Phys. 13 (2013), 1189-1208.
DOI 10.4208/cicp.101111.110512a |
MR 2988885
[10] Eden, A., Foias, C., Nicolaenko, B., Temam, R.:
Exponential Attractors for Dissipative Evolution Equations. Research in Applied Mathematics 37 Masson, Paris; Wiley, Chichester (1994).
MR 1335230 |
Zbl 0842.58056
[13] Elliott, C. M.:
The Cahn-Hilliard model for the kinetics of phase separation. Mathematical Models for Phase Change Problems, Obidos 1988 Int. Ser. Numer. Math. 88 Birkkhäuser, Basel 35-73 (1989).
MR 1038064 |
Zbl 0692.73003
[14] Elliott, C. M., Stuart, A. M.:
Viscous Cahn-Hilliard equation. II: Analysis. J. Differ. Equations 128 387-414 (1996).
MR 1398327 |
Zbl 0855.35067
[16] Fife, P. C.:
Models for phase separation and their mathematics. Electron. J. Differ. Equ. (electronic only) 2000 (2000), Paper No. 48, 26 pages.
MR 1772733 |
Zbl 0957.35062
[21] Makki, A., Miranville, A.:
Well-posedness for one-dimensional anisotropic Cahn-Hilliard and Allen-Cahn systems. Electron. J. Differ. Equ. (electronic only) 2015 (2015), Paper No. 04, 15 pages.
MR 3335735 |
Zbl 1334.35106
[22] Makki, A., Miranville, A.:
Existence of solutions for anisotropic Cahn-Hilliard and Allen-Cahn systems in higher space dimensions. Discrete Contin. Dyn. Syst. Ser. S (2016), 9 759-775.
MR 3503639 |
Zbl 1346.35029
[23] Miranville, A.:
Asymptotic behavior of a sixth-order Cahn-Hilliard system. Cent. Eur. J. Math. 12 (2014), 141-154.
MR 3121828 |
Zbl 1286.35047
[24] Miranville, A., Pata, V., Zelik, S.:
Exponential attractors for singularly perturbed damped wave equations: a simple construction. Asymptot. Anal. 53 (2007), 1-12.
MR 2343457 |
Zbl 1139.35030
[26] Miranville, A., Zelik, S.:
Robust exponential attractors for Cahn-Hilliard type equations with singular potentials. Math. Methods Appl. Sci. 27 (2004), 545-582.
DOI 10.1002/mma.464 |
MR 2041814 |
Zbl 1050.35113
[28] Miranville, A., Zelik, S.:
Attractors for dissipative partial differential equations in bounded and unbounded domains. Handbook of Differential Equations: Evolutionary Equations, Vol. IV. C. M. Dafermos et al. Handbook of Differential Equations Elsevier, Amsterdam 103-200 (2008).
DOI 10.1016/S1874-5717(08)00003-0 |
MR 2508165 |
Zbl 1221.37158
[29] Novick-Cohen, A.:
On the viscous Cahn-Hilliard equation. Material Instabilities in Continuum Mechanics (Edinburgh, 1985-1986) Oxford Sci. Publ. Oxford Univ. Press, New York (1988), 329-342.
MR 0970531 |
Zbl 0632.76119
[30] Novick-Cohen, A.:
The Cahn-Hilliard equation: Mathematical and modeling perspectives. Adv. Math. Sci. Appl. (1998), 8 965-985.
MR 1657208 |
Zbl 0917.35044
[31] Novick-Cohen, A.:
The Cahn-Hilliard equation. Handbook of Differential Equations: Evolutionary Equations. Vol. 4 C. M. Dafermos et al. Handbook of Differential Equations Elsevier/North-Holland, Amsterdam 201-228 (2008).
MR 2508166 |
Zbl 1185.35001
[32] Saoud, B.: Attracteurs Pour des Systèmes Dissipatifs non Autonomes. PhD thesis, Université de Poitiers French (2011).
[35] Torabi, S., Lowengrub, J., Voigt, A., Wise, S.:
A new phase-field model for strongly anisotropic systems. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 465 (2009), 1337-1359.
DOI 10.1098/rspa.2008.0385 |
MR 2500806 |
Zbl 1186.80014