[8] Anh, L. Q., Khanh, P. Q., Van, D. T. M.:
Well-posedness under relaxed semicontinuity for bilevel equilibrium and optimization problems with equilibrium constraints. J. Optim. Theory Appl. 153 (2012), 42-59.
DOI 10.1007/s10957-011-9963-7 |
MR 2892544 |
Zbl 1254.90244
[11] Aubin, J.-P., Frankowska, H.:
Set-Valued Analysis. Modern Birkhäuser Classics Birkhäuser, Boston (2009).
MR 2458436 |
Zbl 1168.49014
[16] Blum, E., Oettli, W.:
From optimization and variational inequalities to equilibrium problems. Math. Stud. 63 (1994), 123-145.
MR 1292380 |
Zbl 0888.49007
[17] Burachik, R., Kassay, G.:
On a generalized proximal point method for solving equilibrium problems in Banach spaces. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 6456-6464.
DOI 10.1016/j.na.2012.07.020 |
MR 2965230
[20] Luca, M. De:
Generalized quasi-variational inequalities and traffic equilibrium problem. Variational Inequalities and Network Equilibrium Problems F. Giannessi Proc. Conf., Erice, 1994 Plenum, New York (1995), 45-54.
MR 1331401 |
Zbl 0847.49007
[22] Rouhani, B. Djafari, Tarafdar, E., Watson, P. J.:
Existence of solutions to some equilibrium problems. J. Optimization Theory Appl. 126 (2005), 97-107.
DOI 10.1007/s10957-005-2660-7 |
MR 2158433
[26] Giannessi, F.:
Theorems of alternative, quadratic programs and complementarity problems. Variational Inequalities and Complementarity Problems Proc. Int. School Math., Erice, 1978 Wiley, Chichester (1980), 151-186.
MR 0578747 |
Zbl 0484.90081
[27] Hadamard, J.: Sur le problèmes aux dérivées partielles et leur signification physique. Bull. Univ. Princeton 13 (1902), 49-52 French.
[36] Maugeri, A.:
Variational and quasi-variational inequalities in network flow models. Recent developments in theory and algorithms. Variational Inequalities and Network Equilibrium Problems Proc. Conf., Erice, 1994 Plenum, New York (1995), 195-211.
MR 1331411 |
Zbl 0847.49010
[38] Noor, M. A., Noor, K. I.:
Equilibrium problems and variational inequalities. Mathematica 47(70) (2005), 89-100.
MR 2165082 |
Zbl 1120.49008
[40] Sadeqi, I., Alizadeh, C. G.:
Existence of solutions of generalized vector equilibrium problems in reflexive Banach spaces. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 2226-2234.
DOI 10.1016/j.na.2010.11.027 |
MR 2781752 |
Zbl 1233.90266
[43] Tikhonov, A. N.:
On the stability of the functional optimization problem. U.S.S.R. Comput. Math. Math. Phys. 6 (1966), 28-33; translation from Zh. Vychisl. Mat. Mat. Fiz. 6 631-634 (1966), Russian.
DOI 10.1016/0041-5553(66)90003-6 |
MR 0198308
[44] Wardrop, J. G.: Some theoretical aspects of road traffic research. Proceedings of the Institute of Civil Engineers, Part II (1952), 325-378.
[45] Zhang, C.:
A class of equilibrium problems with lower and upper bound. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods (electronic only) 63 (2005), e2377--e2385.
DOI 10.1016/j.na.2005.03.019 |
MR 2160254
[46] Zhang, C., Li, J., Feng, Z.: The existence and the stability of solutions for equilibrium problems with lower and upper bounds. J. Nonlinear Anal. Appl. 2012 (2012), Article ID jnaa-00135, 13 pages.