Previous |  Up |  Next

Article

Keywords:
phase transition problem; phase field system; nonlinear parabolic boundary value problem; existence; continuous dependence
Summary:
We consider a phase-field system of Caginalp type perturbed by the presence of an additional maximal monotone nonlinearity. Such a system arises from a recent study of a sliding mode control problem. We prove the existence of strong solutions. Moreover, under further assumptions, we show the continuous dependence on the initial data and the uniqueness of the solution.
References:
[1] Barbu, V.: Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer Monographs in Mathematics Springer, New York (2010). MR 2582280 | Zbl 1197.35002
[2] Barbu, V., Colli, P., Gilardi, G., Marinoschi, G., Rocca, E.: Sliding mode control for a nonlinear phase-field system. Preprint arXiv:1506.01665 [math.AP] (2015), 1-28. MR 3448672
[3] Br{é}zis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies 5. Notas de Matem{á}tica (50) North-Holland Publishing, Amsterdam-London; American Elsevier Publishing, New York (1973). MR 0348562 | Zbl 0252.47055
[4] Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions. Applied Mathematical Sciences 121 Springer, New York (1996). DOI 10.1007/978-1-4612-4048-8_5 | MR 1411908 | Zbl 0951.74002
[5] Caginalp, G.: An analysis of a phase field model of a free boundary. Arch. Ration. Mech. Anal. 92 (1986), 205-245. DOI 10.1007/BF00254827 | MR 0816623 | Zbl 0608.35080
[6] Colli, P., Gilardi, G., Marinoschi, G.: A boundary control problem for a possibly singular phase field system with dynamic boundary conditions. J. Math. Anal. Appl. 434 (2016), 432-463. DOI 10.1016/j.jmaa.2015.09.011 | MR 3404567 | Zbl 1327.49007
[7] Colli, P., Gilardi, G., Marinoschi, G., Rocca, E.: Optimal control for a phase field system with a possibly singular potential. Math. Control Relat. Fields 6 (2016), 95-112. DOI 10.3934/mcrf.2016.6.95 | MR 3448672 | Zbl 1335.49008
[8] Colli, P., Marinoschi, G., Rocca, E.: Sharp interface control in a Penrose-Fife model. ESAIM, Control Optim. Calc. Var. 22 (2016), 473-499. DOI 10.1051/cocv/2015014 | MR 3491779 | Zbl 1338.49007
[9] Damlamian, A.: Some results on the multi-phase Stefan problem. Commun. Partial Differ. Equations 2 (1977), 1017-1044. DOI 10.1080/03605307708820053 | MR 0487015 | Zbl 0399.35054
[10] DiBenedetto, E.: Continuity of weak solutions to a general porous medium equation. Indiana Univ. Math. J. 32 (1983), 83-118. DOI 10.1512/iumj.1983.32.32008 | MR 0684758 | Zbl 0526.35042
[11] Duvaut, G.: Résolution d'un problème de Stefan (fusion d'un bloc de glace à zéro degré). C. R. Acad. Sci., Paris, Sér. A French 276 (1973), 1461-1463. MR 0328346 | Zbl 0258.35037
[12] Elliott, C. M., Zheng, S.: Global existence and stability of solutions to the phase field equations. Free Boundary Value Problems Proc. Conf. Oberwolfach, 1989, Internat. Ser. Numer. Math. 95 Birkhäuser, Basel (1990), 46-58. MR 1111021 | Zbl 0733.35062
[13] Friedman, A.: The Stefan problem in several space variables. Trans. Am. Math. Soc. 133 (1968), 51-87. DOI 10.1090/S0002-9947-1968-0227625-7 | MR 0227625 | Zbl 0162.41903
[14] Grasselli, M., Petzeltová, H., Schimperna, G.: Long time behavior of solutions to the Caginalp system with singular potential. Z. Anal. Anwend. 25 (2006), 51-72. DOI 10.4171/ZAA/1277 | MR 2216881 | Zbl 1128.35021
[15] Hoffmann, K.-H., Jiang, L. S.: Optimal control of a phase field model for solidification. Numer. Funct. Anal. Optimization 13 (1992), 11-27. DOI 10.1080/01630569208816458 | MR 1163315 | Zbl 0724.49003
[16] Hoffmann, K.-H., Kenmochi, N., Kubo, M., Yamazaki, N.: Optimal control problems for models of phase-field type with hysteresis of play operator. Adv. Math. Sci. Appl. 17 (2007), 305-336. MR 2337381 | Zbl 1287.49005
[17] Hui, K. M.: Existence of solutions of the very fast diffusion equation in bounded and unbounded domain. Math. Ann. 339 (2007), 395-443. DOI 10.1007/s00208-007-0119-x | MR 2324725 | Zbl 1145.35075
[18] Kenmochi, N., Niezgódka, M.: Evolution systems of nonlinear variational inequalities arising from phase change problems. Nonlinear Anal., Theory Methods Appl. 22 (1994), 1163-1180. DOI 10.1016/0362-546X(94)90235-6 | MR 1279139
[19] Lauren{ç}ot, Ph.: Long-time behaviour for a model of phase-field type. Proc. R. Soc. Edinb., Sect. A 126 (1996), 167-185. DOI 10.1017/S0308210500030663 | MR 1378839 | Zbl 0851.35055
[20] Showalter, R. E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Mathematical Surveys and Monographs 49 Amer. Math. Soc., Providence (1997). MR 1422252 | Zbl 0870.35004
[21] Simon, J.: Compact sets in the space {$L^p(0,T;B)$}. Ann. Mat. Pura Appl., IV. Ser. 146 (1987), 65-96. MR 0916688
[22] V{á}zquez, J. L.: The Porous Medium Equation. Mathematical Theory. Oxford Mathematical Monographs The Clarendon Press, Oxford University Press, Oxford (2007). MR 2286292 | Zbl 1107.35003
Partner of
EuDML logo