[1] Biscio, C. A. N., Lavancier, F.:
Brillinger mixing of determinantal point processes and statistical applications. Electron. J. Stat. (electronic only) 10 582-607 (2016), arXiv: 1507.06506v1 [math ST] (2015).
DOI 10.1214/16-EJS1116 |
MR 3471989
[3] Daley, D. J., Vere-Jones, D.:
An Introduction to the Theory of Point Processes. Vol. I: Elementary Theory and Methods. Probability and Its Applications Springer, New York (2003).
MR 1950431 |
Zbl 1026.60061
[4] Daley, D. J., Vere-Jones, D.:
An Introduction to the Theory of Point Processes. Vol. II: General Theory and Structure. Probability and Its Applications Springer, New York (2008).
MR 2371524 |
Zbl 1159.60003
[8] Heinrich, L.: On the Brillinger-mixing property of stationary point processes. Submitted (2015), 12 pages.
[9] Heinrich, L., Klein, S.:
Central limit theorem for the integrated squared error of the empirical second-order product density and goodness-of-fit tests for stationary point processes. Stat. Risk Model. 28 (2011), 359-387.
DOI 10.1524/strm.2011.1094 |
MR 2877571 |
Zbl 1277.60085
[13] Hough, J. B., Krishnapur, M., Peres, Y., Virág, B.:
Zeros of Gaussian Analytic Functions and Determinantal Point Processes. University Lecture Series 51 American Mathematical Society, Providence (2009).
MR 2552864 |
Zbl 1190.60038
[14] Illian, J., Penttinen, A., Stoyan, H., Stoyan, D.:
Statistical Analysis and Modelling of Spatial Point Patterns. Statistics in Practice John Wiley & Sons, Chichester (2008).
MR 2384630 |
Zbl 1197.62135
[15] Jolivet, E.:
Central limit theorem and convergence of empirical processes for stationary point processes. Point Processes and Queuing Problems, Keszthely, 1978 Colloq. Math. Soc. János Bolyai 24 North-Holland, Amsterdam (1981), 117-161.
MR 0617406 |
Zbl 0474.60040
[17] Karr, A. F.:
Point Processes and Their Statistical Inference. Probability: Pure and Applied 7 Marcel Dekker, New York (1991).
MR 1113698 |
Zbl 0733.62088
[18] Lavancier, F., Møller, J., Rubak, E.:
Determinantal point process models and statistical inference. J. R. Stat. Soc., Ser. B, Stat. Methodol. 77 (2015), 853-877 arXiv: 1205.4818v1-v5 [math ST] (2012-2014).
DOI 10.1111/rssb.12096 |
MR 3382600
[19] Lenard, A.:
States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures. Arch. Rational Mech. Anal. 59 (1975), 241-256.
DOI 10.1007/BF00251602 |
MR 0391831
[20] Leonov, V. P., Shiryaev, A. N.:
On a method of calculation of semi-invariants. Theory Probab. Appl. 4 319-329 (1960), translation from Teor. Veroyatn. Primen. 4 342-355 (1959), Russian 342-355.
MR 0123345 |
Zbl 0087.33701
[22] Press, S. J.:
Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of Inference. Robert E. Krieger Publishing Company, Malabar (1982).
Zbl 0519.62041
[23] Rao, A. R., Bhimasankaram, P.:
Linear Algebra. Texts and Readings in Mathematics 19 Hindustan Book Agency, New Delhi (2000).
MR 1781860 |
Zbl 0982.15001