[1] Altendorf, H., Latourte, F., Jeulin, D., Faessel, M., Saintyant, L.:
3D reconstruction of a multiscale microstructure by anisotropic tessellation models. Image Anal. Stereol. 33 (2014), 121-130.
DOI 10.5566/ias.v33.p121-130
[2] Chiu, S. N., Stoyan, D., Kendall, W. S., Mecke, J.:
Stochastic Geometry and Its Applications. Wiley Series in Probability and Statistics John Wiley & Sons, Chichester (2013).
MR 3236788 |
Zbl 1291.60005
[3] Dereudre, D.:
Existence of Quermass processes for non locally stable interaction and non bounded convex grains. Adv. Appl. Probab. 41 (2009), 664-681.
DOI 10.1017/S0001867800003517 |
MR 2571312
[4] Dereudre, D., Lavancier, F., Helisová, K. Staňková:
Estimation of the intensity parameter of the germ-grain Quermass-interaction model when the number of germs is not observed. Scand. J. Stat. 41 (2014), 809-829.
DOI 10.1111/sjos.12064 |
MR 3249430
[5] Diggle, P. J.:
Binary mosaics and the spatial pattern of heather. Biometrics 37 (1981), 531-539.
DOI 10.2307/2530566
[6] Geyer, C. J., Møller, J.:
Simulation procedures and likelihood inference for spatial point processes. Scand. J. Stat. 21 (1994), 359-373.
MR 1310082 |
Zbl 0809.62089
[7] Helisová, K.: Modeling, statistical analyses and simulations of random items and behavior on material surfaces. Supplemental UE: TMS 2014 Conference Proceedings, San Diego (2014), 461-468.
[8] Hermann, P., Mrkvička, T., Mattfeldt, T., Minárová, M., Helisová, K., Nicolis, O., Wartner, F., Stehlík, M.:
Fractal and stochastic geometry inference for breast cancer: a case study with random fractal models and Quermass-interaction process. Stat. Med. 34 (2015), 2636-2661.
DOI 10.1002/sim.6497 |
MR 3368407
[9] Kendall, W. S., Lieshout, M. N. M. van, Baddeley, A. J.:
Quermass-interaction processes: conditions for stability. Adv. Appl. Probab. 31 (1999), 315-342.
DOI 10.1017/S0001867800009137 |
MR 1724554
[10] Klazar, M.:
Generalised Davenport-Schinzel sequences: results, problems and applications. Integers: The Electronic Journal of Combinatorial Number Theory 2 (2002), A11.
MR 1917956
[11] Molchanov, I.:
Theory of Random Sets. Probability and Its Applications Springer, London (2005).
MR 2132405 |
Zbl 1109.60001
[14] Møller, J., Waagepetersen, R. P.:
Statistical Inference and Simulation for Spatial Point Processes. Monographs on Statistics and Applied Probability 100 Chapman and Hall/CRC, Boca Raton (2004).
MR 2004226 |
Zbl 1044.62101
[15] Mrkvička, T., Mattfeldt, T.:
Testing histological images of mammary tissues on compatibility with the Boolean model of random sets. Image Anal. Stereol. 30 (2011), 11-18.
DOI 10.5566/ias.v30.p11-18 |
MR 2816303
[16] Mrkvička, T., Rataj, J.:
On the estimation of intrinsic volume densities of stationary random closed sets. Stochastic Processes Appl. 118 (2008), 213-231.
MR 2376900 |
Zbl 1148.62023
[17] Ohser, J., Mücklich, F.: Statistical Analysis of Microstructures in Materials Science. Wiley Series in Statistics in Practice Wiley, Chichester (2000).
[18] Pratt, W. K.: Digital Image Processing. Wiley & Sons, New York (2001).
[19] Team, R Development Core:
R: A language and environment for statistical computing. R Found Stat Comp, Vienna.
http://www.R-project.org/ (2010).
[20] Helisová, K. Staňková, Staněk, J.:
Dimension reduction in extended Quermass-interaction process. Methodol. Comput. Appl. Probab. 16 (2014), 355-368.
DOI 10.1007/s11009-013-9343-x |
MR 3199051
[21] Zikmundová, M., Helisová, K. Staňková, Beneš, V.:
Spatio-temporal model for a random set given by a union of interacting discs. Methodol. Comput. Appl. Probab. 14 (2012), 883-894.
DOI 10.1007/s11009-012-9287-6 |
MR 2966326
[22] Zikmundová, M., Helisová, K. Staňková, Beneš, V.:
On the use of particle Markov chain Monte Carlo in parameter estimation of space-time interacting discs. Methodol. Comput. Appl. Probab. 16 (2014), 451-463.
DOI 10.1007/s11009-013-9367-2 |
MR 3199057