[1] Andrieu, V., Praly, L.:
On the existence of Kazantzis-Kravaris/Luenberger observers. SIAM J. Control Optim. 45 (2006), 432-456.
DOI 10.1137/040617066 |
MR 2246084
[2] Cai, X., Krstic, M.:
Control of discrete-time nonlinear systems actuated through counterconvecting transport dynamics. J. Control Decision 1 (2014), 34-50.
DOI 10.1080/23307706.2014.885290
[3] Cai, X., Krstic, M.:
Nonlinear control under wave actuator dynamics with time- and state-dependent moving boundary. Int. J. Robust. Nonlinear Control 25 (2015), 222-253.
DOI 10.1002/rnc.3083 |
MR 3293094 |
Zbl 1305.93167
[4] Cai, X., Lin, Y., Liu, L.:
Universal stabilisation design for a class of non-linear systems with time-varying input delays. IET Control Theory Appl. 9 (2015), 1481-1490.
DOI 10.1049/iet-cta.2014.1085 |
MR 3381705
[5] Coron, J., Vazquez, R., Krstic, M., Bastin, G.:
Local exponential H2 stabilization of a 2x2 quasilinear hyperbolic system using backstepping. SIAM J. Control Optim. 51 (2013), 2005-2035.
DOI 10.1137/120875739 |
MR 3049647
[7] Santos, V. Dos, Prieur, C.:
Boundary control of open channels with numerical and experimental validations. IEEE Trans. Control System Technol. 16 (2008), 1252-1264.
DOI 10.1109/tcst.2008.919418
[8] Fridman, L., Shtessel, Y., Edwards, C., Yan, X. G.:
Higer-order sliding-mode observer for state estimation and input reconstruction in nonlinear systems. Int. J. Robust Nonlinear Control 18 (2008), 399-412.
DOI 10.1002/rnc.1198 |
MR 2392130
[10] Gugat, M., Dick, M.:
Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction. Math. Control Related Fields 1 (2011), 469-491.
DOI 10.3934/mcrf.2011.1.469 |
MR 2871937
[15] Meglio, F. Di, Krstic, M., Vazquez, R., Petit, N.:
Backstepping stabilization of an underactuated $3 \times 3$ linear hyperbolic system of fluid flow transport equations. In: Proc. American Control Conference, Montreal 2012, pp. 3365-3370.
DOI 10.1109/acc.2012.6315422
[16] Meglio, F. Di, Vazquez, R., Krstic, M.:
Stabilization of a system of n + 1 coupled first-order hyperbolic linear PDEs with a single boundary input. IEEE Trans. Automat. Control 58 (2013), 3097-3111.
DOI 10.1109/tac.2013.2274723 |
MR 3152271