[1] Bertsekas, D. P.:
Dynamic Programming: Deterministic and Stochastic Models. Prentice-Hall, NJ 1987.
MR 0896902 |
Zbl 0649.93001
[3] Borwein, J. M., Zhu, Q. J.:
Techniques of Variational Analysis. Springer, New York 2005.
MR 2144010 |
Zbl 1076.49001
[4] Cruz-Suárez, D., Montes-de-Oca, R., Salem-Silva, F.:
Conditions for the uniqueness of optimal policies of discounted Markov decision processes. Math. Methods Oper. Res. 60 (2004), 415-436.
DOI 10.1007/s001860400372 |
MR 2106092 |
Zbl 1104.90053
[5] Cruz-Suárez, D., Montes-de-Oca, R.:
Uniform convergence of the value iteration policies for discounted Markov decision processes. Bol. Soc. Mat. Mexicana 12 (2006), 133-152.
MR 2301750
[9] Montes-de-Oca, R., Lemus-Rodríguez, E.:
An unbounded Berge's minimum theorem with applications to discounted Markov decision processes. Kybernetika 48 (2012), 268-286.
MR 2954325 |
Zbl 1275.90124
[10] Montes-de-Oca, R., Lemus-Rodríguez, E., Salem-Silva, F.:
Nonuniqueness versus uniqueness of optimal policies in convex discounted Markov decision processes. J. Appl. Math. 2013 (2013), 1-5.
DOI 10.1155/2013/271279 |
MR 3039713 |
Zbl 1266.90113
[12] Tanaka, K., Hosino, M., Kuroiwa, D.:
On an $\varepsilon $-optimal policy of discrete time stochastic control processes. Bull. Inform. Cybernet. 27 (1995), 107-119.
MR 1335274