Previous |  Up |  Next

Article

Keywords:
multi-agent system; port-Hamiltonian system; Casimir function; link dynamics; multi-machine power system
Summary:
In this paper, the output synchronization control is considered for multi-agent port-Hamiltonian systems with link dynamics. By using Hamiltonian energy function and Casimir function comprehensively, the design method is proposed to overcome the difficulties taken by link dynamics. The Hamiltonian function is used to handle the dynamic of agent, while the Casimir function is constructed to deal with the dynamic of link. Thus the Lyapunov function is generated by modifying the Hamiltonian function of forced Hamiltonian systems. Then, the proposed approach is applied in multi-machine power systems, which are interconnected in microgrid with power frequencies as link dynamics. Finally, the simulation result demonstrates the effectiveness of the gotten method.
References:
[1] Arcak, M.: Passivity as a design tool for group coordination. IEEE Trans. Automat. Control 52 (2007), 1380-1390. DOI 10.1109/tac.2007.902733 | MR 2341743
[2] Cheng, D., Xi, Z., Hong., Y., Qin, H.: Energy-based stabilization of forced Hamiltonian systems and its application to power systems. Control Theory Appl. 17 (2000), 798-802.
[3] Chopra, N., Spong, M. W.: Passivity-based control of multi-agent systems. In: Advances in Robot Control: from Everyday Physics to Human-Like Movements (S. Kawamura and M. Svinin, eds.), Springer-Verlag, New York 2006, pp. 107-134. DOI 10.1007/978-3-540-37347-6_6 | Zbl 1134.93308
[4] Godsil, C., Royle, G.: Algebraic Graph Theory. Springer-Verlag, New York 2001. DOI 10.1007/978-1-4613-0163-9 | MR 1829620 | Zbl 0968.05002
[5] Hong, Y., Gao, L., Cheng, D., Hu, J.: Lyapunov-based approach to multiagent systems with switching jointly connected interconnection. IEEE Trans. Automat. Control 52 (2007), 943-948. DOI 10.1109/tac.2007.895860 | MR 2324260
[6] Hu, J.: On robust consensus of multi-agent systems with communication delays. Kybernetika 45 (2009), 768-784. MR 2599111 | Zbl 1190.93003
[7] Jafarian, M., Vos, E., Persis, C. De, Schaft, A. J. van der, Scherpen, J. M. A.: Formation control of a multi-agent system subject to Coulomb friction. Automatica 61 (2015), 253-262. DOI 10.1016/j.automatica.2015.08.021 | MR 3401712
[8] Li, C., Wang, Y.: Protocol design for output consensus of port-controlled Hamiltonian multi-agent systems. Acta Automat. Sinica 40 (2014), 415-422. DOI 10.1016/s1874-1029(14)60004-5
[9] Liu, T., Jiang, Z. P.: Distributed output-feedback control of nonlinear multi-agent systems. IEEE Trans. Automat. Control 58 (2013), 2912-2917. DOI 10.1109/tac.2013.2257616 | MR 3126000
[10] Lu, Q., Sun, Y. Z., Xu, Z., Mochizuki, T.: Decentralized nonlinear optimal excitation control. IEEE Trans. Power Systems 11 (1996), 1957-1962. DOI 10.1109/59.544670
[11] Macchelli, A., Melchiorri, C.: Control by interconnection of mixed port Hamiltonian systems. IEEE Trans. Automat. Control 50 (2005), 1839-1844. DOI 10.1109/tac.2005.858656 | MR 2182737
[12] Maschke, B., Ortega, R., Schaft, A. J. van der: Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Trans. Automat. Control 45 (2000), 1498-1502. DOI 10.1109/9.871758 | MR 1797402
[13] Olfati-Saber, R., Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Control 49 (2004), 1520-1533. DOI 10.1109/tac.2004.834113 | MR 2086916
[14] Ortega, R., Schaft, A. J. van der, Maschke, B., Escobar, G.: Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38 (2002), 585-596. DOI 10.1016/s0005-1098(01)00278-3 | MR 2131469
[15] Ren, W.: On consensus algorithms for double-integrator dynamics. IEEE Trans. Automat. Control 53 (2008), 1503-1509. DOI 10.1109/tac.2008.924961 | MR 2451239
[16] Sakai, S.: An impedance control for simplified hydraulic model with Casimir functions. In: Proc. SICE Annual Conference, Taipei 2010.
[17] Shi, G., Johansson, K. H., Hong, Y.: Reaching an optimal consensus: dynamical systems that compute intersections of convex sets. IEEE Trans. Automat. Control 58 (2013), 610-622. DOI 10.1109/tac.2012.2215261 | MR 3029459
[18] Sun, Y. Z., Li, X., Song, Y. H.: A new Lyapunov function for transient stability analysis of controlled power systems. Power Engrg. Soc. Winter Meeting 2 (2000), 1325-1330.
[19] Schaft, A. J. van der: $L_{2}$-Gain and Passivity Techniques in Nonlinear Control. Springer-Verlag, London 2000. DOI 10.1007/978-1-4471-0507-7 | MR 1844565
[20] Schaft, A. J. van der, Maschke, B. M.: Port-Hamiltonian systems on graphs. SIAM J. Control Optim. 51 (2013), 906-937. DOI 10.1137/110840091 | MR 3032900
[21] Wang, X., Xu, D., Hong, Y.: Consensus control of nonlinear leader-follower multi-agent systems with actuating disturbances. Systems Control Lett 73 (2014), 58-66. DOI 10.1016/j.sysconle.2014.09.004 | MR 3270955 | Zbl 1297.93018
[22] Wang, Y., Cheng, D., Li, C., Ge, Y.: Dissipative Hamiltonian realization and energy-based $L_{2}$-disturbance attenuation control of multimachine power systems. IEEE Trans. Automat- Control 48 (2003), 1428-1433. DOI 10.1109/tac.2003.815037 | MR 2004379
[23] Wang, Y., Ge, S.: Augmented Hamiltonian formulation and energy-based control design of uncertain mechanical systems. IEEE Trans. Control Systems Technol. 16 (2008), 202-213. DOI 10.1109/tcst.2007.903367
[24] Xi, Z., Cheng, D., Lu., Q., Mei, S.: Nonlinear decentralized controller design for multimachine power systems using Hamiltonian function method. Automatica 38 (2002), 527-534. DOI 10.1016/s0005-1098(01)00233-3
Partner of
EuDML logo