[2] Cheng, D., Xi, Z., Hong., Y., Qin, H.: Energy-based stabilization of forced Hamiltonian systems and its application to power systems. Control Theory Appl. 17 (2000), 798-802.
[3] Chopra, N., Spong, M. W.:
Passivity-based control of multi-agent systems. In: Advances in Robot Control: from Everyday Physics to Human-Like Movements (S. Kawamura and M. Svinin, eds.), Springer-Verlag, New York 2006, pp. 107-134.
DOI 10.1007/978-3-540-37347-6_6 |
Zbl 1134.93308
[5] Hong, Y., Gao, L., Cheng, D., Hu, J.:
Lyapunov-based approach to multiagent systems with switching jointly connected interconnection. IEEE Trans. Automat. Control 52 (2007), 943-948.
DOI 10.1109/tac.2007.895860 |
MR 2324260
[6] Hu, J.:
On robust consensus of multi-agent systems with communication delays. Kybernetika 45 (2009), 768-784.
MR 2599111 |
Zbl 1190.93003
[7] Jafarian, M., Vos, E., Persis, C. De, Schaft, A. J. van der, Scherpen, J. M. A.:
Formation control of a multi-agent system subject to Coulomb friction. Automatica 61 (2015), 253-262.
DOI 10.1016/j.automatica.2015.08.021 |
MR 3401712
[8] Li, C., Wang, Y.:
Protocol design for output consensus of port-controlled Hamiltonian multi-agent systems. Acta Automat. Sinica 40 (2014), 415-422.
DOI 10.1016/s1874-1029(14)60004-5
[10] Lu, Q., Sun, Y. Z., Xu, Z., Mochizuki, T.:
Decentralized nonlinear optimal excitation control. IEEE Trans. Power Systems 11 (1996), 1957-1962.
DOI 10.1109/59.544670
[11] Macchelli, A., Melchiorri, C.:
Control by interconnection of mixed port Hamiltonian systems. IEEE Trans. Automat. Control 50 (2005), 1839-1844.
DOI 10.1109/tac.2005.858656 |
MR 2182737
[12] Maschke, B., Ortega, R., Schaft, A. J. van der:
Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Trans. Automat. Control 45 (2000), 1498-1502.
DOI 10.1109/9.871758 |
MR 1797402
[13] Olfati-Saber, R., Murray, R. M.:
Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Control 49 (2004), 1520-1533.
DOI 10.1109/tac.2004.834113 |
MR 2086916
[14] Ortega, R., Schaft, A. J. van der, Maschke, B., Escobar, G.:
Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38 (2002), 585-596.
DOI 10.1016/s0005-1098(01)00278-3 |
MR 2131469
[16] Sakai, S.: An impedance control for simplified hydraulic model with Casimir functions. In: Proc. SICE Annual Conference, Taipei 2010.
[17] Shi, G., Johansson, K. H., Hong, Y.:
Reaching an optimal consensus: dynamical systems that compute intersections of convex sets. IEEE Trans. Automat. Control 58 (2013), 610-622.
DOI 10.1109/tac.2012.2215261 |
MR 3029459
[18] Sun, Y. Z., Li, X., Song, Y. H.: A new Lyapunov function for transient stability analysis of controlled power systems. Power Engrg. Soc. Winter Meeting 2 (2000), 1325-1330.
[20] Schaft, A. J. van der, Maschke, B. M.:
Port-Hamiltonian systems on graphs. SIAM J. Control Optim. 51 (2013), 906-937.
DOI 10.1137/110840091 |
MR 3032900
[22] Wang, Y., Cheng, D., Li, C., Ge, Y.:
Dissipative Hamiltonian realization and energy-based $L_{2}$-disturbance attenuation control of multimachine power systems. IEEE Trans. Automat- Control 48 (2003), 1428-1433.
DOI 10.1109/tac.2003.815037 |
MR 2004379
[23] Wang, Y., Ge, S.:
Augmented Hamiltonian formulation and energy-based control design of uncertain mechanical systems. IEEE Trans. Control Systems Technol. 16 (2008), 202-213.
DOI 10.1109/tcst.2007.903367
[24] Xi, Z., Cheng, D., Lu., Q., Mei, S.:
Nonlinear decentralized controller design for multimachine power systems using Hamiltonian function method. Automatica 38 (2002), 527-534.
DOI 10.1016/s0005-1098(01)00233-3